1887

Abstract

Epipolythiodioxopiperazines (ETPs) are toxic secondary metabolites made only by fungi. The best-known ETP is gliotoxin, which appears to be a virulence factor associated with invasive aspergillosis of immunocompromised patients. The toxicity of ETPs is due to the presence of a disulphide bridge, which can inactivate proteins via reaction with thiol groups, and to the generation of reactive oxygen species by redox cycling. With the availability of complete fungal genome sequences and efficient gene-disruption techniques for fungi, approaches are now feasible to delineate biosynthetic pathways for ETPs and to gain insights into the evolution of such gene clusters.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27847-0
2005-04-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511021.html?itemId=/content/journal/micro/10.1099/mic.0.27847-0&mimeType=html&fmt=ahah

References

  1. Aggarwall, R., Tewari, A. K., Srivastava, K. D. & Singh, D. V. ( 2004; ). Role of antibiosis in the biological control of spot blotch (Cochliobolus sativus) of wheat by Chaetomium globosum. Mycopathologia 157, 369–377.[CrossRef]
    [Google Scholar]
  2. Balzi, E. & Goffeau, A. ( 1995; ). Yeast multidrug resistance: the PDR network. J Bioenerg Biomembr 27, 71–76.[CrossRef]
    [Google Scholar]
  3. Beaver, J. P. & Waring, P. ( 1994; ). Lack of correlation between early intracellular calcium ion rises and the onset of apoptosis in thymocytes. Immunol Cell Biol 72, 489–499.[CrossRef]
    [Google Scholar]
  4. Bell, M. R., Johnson, J. R., Wildi, B. S. & Woodard, R. B. ( 1958; ). The structure of gliotoxin. J Am Chem Soc 80, 1001.[CrossRef]
    [Google Scholar]
  5. Bernardo, P. H., Brasch, N., Chai, C. L. & Waring, P. ( 2003; ). A novel redox mechanism for the glutathione-dependent reversible uptake of a fungal toxin in cells. J Biol Chem 278, 46549–46555.[CrossRef]
    [Google Scholar]
  6. Bissinger, P. & Kuchler, K. ( 1994; ). Molecular cloning and expression of the Saccharomyces cerevisiae STS1 gene product. A yeast ABC transporter conferring mycotoxin resistance. J Biol Chem 269, 4180–4186.
    [Google Scholar]
  7. Brown, D. W., Proctor, R. H., Dyer, R. B. & Plattner, R. D. ( 2003; ). Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. J Agric Food Chem 51, 7936–7944.[CrossRef]
    [Google Scholar]
  8. Buades, C. & Moya, A. ( 1996; ). Phylogenetic analysis of the isopenicillin-N-synthetase horizontal gene transfer. J Mol Evol 42, 537–542.[CrossRef]
    [Google Scholar]
  9. Bu'Lock, J. D. & Clough, L. E. ( 1992; ). Sirodesmin biosynthesis. Aust J Chem 45, 39–45.[CrossRef]
    [Google Scholar]
  10. Byeng, W. S., Jensen, P. R., Kauffman, C. A. & Fenical, W. ( 1999; ). New cytotoxic epidithiodioxopiperazines related to verticillin A from a marine isolate of the fungus Penicillium. Nat Prod Lett 13, 213–222.[CrossRef]
    [Google Scholar]
  11. Challis, G. L., Ravel, J. & Townsend, C. A. ( 2000; ). Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7, 211–224.[CrossRef]
    [Google Scholar]
  12. Cheeke, P. R. ( 1995; ). Endogenous toxins and mycotoxins in forage grasses and their effects on livestock. J Anim Sci 73, 909–918.
    [Google Scholar]
  13. Curtis, P. J., Greatbanks, D., Hesp, B., Cameron, A. F. & Freer, A. A. ( 1977; ). Sirodesmins A, B, C, and G, antiviral epipolythiopiperazine-2,5-diones of fungal origin: X-ray analysis of sirodesmin A diacetate. J Chem Soc Perkin Trans 1, 180–189.
    [Google Scholar]
  14. Daly, P. & Kavanagh, K. ( 2002; ). Immobilization of Aspergillus fumigatus colonies in a soft agar matrix allows visualization of A549 cell detachment and death. Med Mycol 40, 27–33.[CrossRef]
    [Google Scholar]
  15. Debatin, K.-M., Poncet, D. & Kromer, G. ( 2002; ). Chemotherapy: targeting the mitochondrial death pathway. Oncogene 21, 8786–8803.[CrossRef]
    [Google Scholar]
  16. De Clercq, E., Billiau, A., Ottenheijm, H. C. & Herscheid, J. D. ( 1978; ). Antireverse transcriptase activity of gliotoxin analogs. Biochem Pharmacol 27, 635–639.[CrossRef]
    [Google Scholar]
  17. Deffieux, G., Gadret, M., Leger, J. M. & Carpy, A. ( 1977; ). Crystal structure of an original fungal metabolite of 3,6-epidithio-2,5-dioxopiperazines: epicorazine A. Acta Crystallogr B33, 1474–1478.
    [Google Scholar]
  18. Dekel, R., Zvibel, I., Brill, S., Brazovsky, E., Halpern, Z. & Oren, R. ( 2003; ). Gliotoxin ameliorates development of fibrosis and cirrhosis in a thioacetamide rat model. Dig Dis Sci 48, 1642–1647.[CrossRef]
    [Google Scholar]
  19. del Sorbo, G., Schoonbeek, H. J. & de Waard, M. A. ( 2000; ). Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol 30, 1–15.[CrossRef]
    [Google Scholar]
  20. Ernst-Russell, M., Chai, C. L., Hurne, A. M., Waring, P., Hockless, D. C. R. & Elix, J. A. ( 1999; ). Structure revision and cytotoxic activity of the scabrosin esters, epidithiopiperazinediones from the lichen Xanthoparmelia scabrosa. Aust J Chem 52, 279–283.[CrossRef]
    [Google Scholar]
  21. Ferezou, J.-P., Riche, C., Quesneau-Thierry, A., Pascard-Billy, C., Barbier, M., Bousquet, J. F. & Boudart, G. ( 1977; ). Structures de deux toxines isolées des cultures de champignon Phoma lingam Tode: la sirodesmine PL et la desacetyl sirodesmine PL. Nouv J Chim 1, 327–334.
    [Google Scholar]
  22. Ferezou, J.-P., Quesneau-Thierry, A., Servy, C., Zissmann, E. & Barbier, M. ( 1980; ). Sirodesmin PL Biosynthesis in Phoma lingam Tode. J Chem Soc Perkin Trans 1, 1739–1746.
    [Google Scholar]
  23. Fitzgerald, J. M., Collin, R. G. & Towers, N. R. ( 1998; ). Biological control of sporidesmin-producing strains of Pithomyces chartarum by biocompetitive exclusion. Lett Appl Microbiol 26, 17–21.[CrossRef]
    [Google Scholar]
  24. Gardiner, D. M., Cozijnsen, A. J., Wilson, L. M., Pedras, M. S. C. & Howlett, B. J. ( 2004; ). The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol Microbiol 53, 1307–1318.[CrossRef]
    [Google Scholar]
  25. Gardiner, D. M., Jarvis, R. S. & Howlett, B. J. ( 2005; ). The ABC transporter gene in the sirodesmin biosynthetic gene cluster of Leptosphaeria maculans is not essential for sirodesmin production but facilitates self-protection. Fungal Genet Biol 42, 257–263.[CrossRef]
    [Google Scholar]
  26. Green, D., Pace, S. M., Hurne, A. M., Waring, P., Hart, J. D. & Dulhunty, A. F. ( 2000; ). Skeletal muscle ryanodine receptor channels are activated by the fungal metabolite, gliotoxin. J Membr Biol 175, 223–233.[CrossRef]
    [Google Scholar]
  27. Hope, W. W. & Denning, D. W. ( 2004; ). Invasive aspergillosis: current and future challenges in diganosis and therapy. Clin Microbiol Infect 10, 2–4.[CrossRef]
    [Google Scholar]
  28. Howlett, B. J. ( 2004; ). Current knowledge of the Brassica napusLeptosphaeria maculans interaction: a review. Can J Plant Pathol 26, 1–8.[CrossRef]
    [Google Scholar]
  29. Hurne, A. M., Chai, C. L. & Waring, P. ( 2000; ). Inactivation of rabbit muscle creatine kinase by reversible formation of an internal disulfide bond induced by the fungal toxin gliotoxin. J Biol Chem 275, 25202–25206.[CrossRef]
    [Google Scholar]
  30. Hurne, A. M., Chai, C. L., Moerman, K. & Waring, P. ( 2002; ). Influx of calcium through a redox sensitive plasma membrane channel in thymocytes causes early necrotic cell death induced by the epipolythiodioxopiperazine toxins. J Biol Chem 277, 31631–31638.[CrossRef]
    [Google Scholar]
  31. Jordan, T. W. & Pedersen, J. S. ( 1986; ). Sporidesmin and gliotoxin induce cell detachment and perturb microfilament structure in cultured liver cells. J Cell Sci 85, 33–46.
    [Google Scholar]
  32. Joshi, B. K., Gloer, J. B. & Wicklow, D. T. ( 1999; ). New verticillin and glisoprenin analogues from Gliocladium catenulatum, a mycoparasite of Aspergillus flavus sclerotia. J Nat Prod 62, 730–733.[CrossRef]
    [Google Scholar]
  33. Kawahara, N., Nozawa, K., Nakajima, S. & Kawai, K. ( 1987; ). Studies on fungal products. Part 13. Isolation and structures of dithiosilvatin and silvathione, novel dioxopiperazine derivatives from Aspergillus silvaticus. J Chem Soc Perkin Trans 1, 2099–2101.
    [Google Scholar]
  34. Kawahara, N., Nakajima, S., Yamazaki, M. & Kawai, K. ( 1989; ). Structure of a novel epidithiodioxopiperazine, emethallicin A, a potent inhibitor of histamine release from Emericella heterothallica. Chem Pharm Bull 37, 2592–2595.[CrossRef]
    [Google Scholar]
  35. Kirby, G. W. & Robins, D. J. ( 1980; ). The biosynthesis of gliotoxin and related epipolythiodioxopiperazines. In The Biosynthesis of Mycotoxins. Edited by P. S. Steyn. New York: Academic Press.
  36. Kirby, G. W., Patrick, G. L. & Robins, D. J. ( 1978; ). cyclo-(l-phenylalanyl-l-seryl) as an intermediate in the biosynthesis of gliotoxin. J Chem Soc Perkin Trans 1, 1336–1338.
    [Google Scholar]
  37. Kleinwachter, P., Dahse, H. M., Luhmann, U., Schlegel, B. & Dornberger, K. ( 2001; ). Epicorazine C, an antimicrobial metabolite from Stereum hirsutum HKI 0195. J Antibiot 54, 521–525.[CrossRef]
    [Google Scholar]
  38. Kroken, S., Glass, N. L., Taylor, J. W., Yoder, O. C. & Turgeon, B. G. ( 2003; ). Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 100, 15670–15675.[CrossRef]
    [Google Scholar]
  39. Macdonald, J. C. & Slater, G. P. ( 1975; ). Biosynthesis of gliotoxin and mycelianamide. Can J Biochem 53, 475–478.[CrossRef]
    [Google Scholar]
  40. Martin Castro, A. M. ( 2004; ). Claisen rearrangement over the past nine decades. Chem Rev 104, 2939–3002.[CrossRef]
    [Google Scholar]
  41. McStay, G., Clarke, S. J. & Halestrap, A. P. ( 2002; ). Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition. Biochem J 367, 541–548.[CrossRef]
    [Google Scholar]
  42. Moerman, K. L., Chai, C. L. L. & Waring, P. ( 2003; ). Evidence that the lichen-derived scabrosin esters target mitochondrial ATP synthase in P388D1 cells. Toxicol Appl Pharmacol 190, 232–240.[CrossRef]
    [Google Scholar]
  43. Mootz, H. D. & Marahiel, M. A. ( 1997; ). Biosynthetic systems for nonribosomal peptide antibiotic assembly. Curr Opin Chem Biol 1, 543–551.[CrossRef]
    [Google Scholar]
  44. Mullbacher, A., Waring, P. & Eichner, R. D. ( 1985; ). Identification of an agent in cultures of Aspergillus fumigatus displaying anti-phagocytic and immunomodulating activity in vitro. J Gen Microbiol 131, 1251–1258.
    [Google Scholar]
  45. Mullbacher, A., Waring, P., Tiwari-Palni, U. & Eichner, R. D. ( 1986; ). Structural relationship of epipolythiodioxopiperazines and their immunomodulating activity. Mol Immunol 23, 231–236.[CrossRef]
    [Google Scholar]
  46. Mullbacher, A., Moreland, A. F., Waring, P., Sjaarda, A. & Eichner, R. D. ( 1988; ). Prevention of graft-versus-host disease by treatment of bone marrow with gliotoxin in fully allogeneic chimeras and their cytotoxic T cell repertoire. Transplantation 46, 120–125.[CrossRef]
    [Google Scholar]
  47. Munday, R. ( 1982; ). Studies on the mechanism of toxicity of the mycotoxin sporidesmin. I. Generation of superoxide radical by sporidesmin. Chem Biol Interact 41, 361–374.[CrossRef]
    [Google Scholar]
  48. Neuss, N., Boeck, L. D., Brannon, D. R. & 11 other authors ( 1968; ). Aranotin and related metabolites from Arachniotus aureus (Eidam) Schroeter. IV. Fermentation, isolation, structure elucidation, biosynthesis, and antiviral properties. Antimicrob Agents Chemother 8, 213–219.
    [Google Scholar]
  49. Nishida, S., Yoshida, L. S., Shimoyama, T., Nunoi, H., Kobayashi, T. & Tsunawaki, S. ( 2005; ). Fungal metabolite gliotoxin targets flavocytochrome b558 in the activation of the human neutrophil NADPH oxidase. Infect Immun 73, 235–244.[CrossRef]
    [Google Scholar]
  50. Orr, J. G., Leel, V., Cameron, G. A. & 7 other authors ( 2004; ). Mechanism of action of the antifibrogenic compound gliotoxin in rat liver cells. Hepatology 40, 232–242.[CrossRef]
    [Google Scholar]
  51. Pahl, H. L., Krauss, B., Schulze-Osthoff, K. & 9 other authors ( 1996; ). The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-κB. J Exp Med 183, 1829–1840.[CrossRef]
    [Google Scholar]
  52. Pedras, M. S. C., Seguin-Swartz, G. & Abrams, S. R. ( 1990; ). Minor phytotoxins from the blackleg fungus Phoma lingam. Phytochemistry 29, 777–782.[CrossRef]
    [Google Scholar]
  53. Reeves, E. P., Messina, C. G. M., Doyle, S. & Kavanagh, K. ( 2004; ). Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia 158, 73–79.[CrossRef]
    [Google Scholar]
  54. Rightsel, W. A., Schneider, H. G., Sloan, B. J., Graf, P. R., Miller, F. A., Bart, A., Ehrlich, J. & Dixon, G. J. ( 1964; ). Antiviral activity of gliotoxin and gliotoxin acetate. Nature 204, 1333–1334.
    [Google Scholar]
  55. Rodriguez, P. L. & Carrasco, L. ( 1992; ). Gliotoxin: inhibitor of poliovirus RNA synthesis that blocks the viral RNA polymerase 3Dpol. J Virol 66, 1971–1976.
    [Google Scholar]
  56. Rouxel, T., Chupeau, Y., Fritz, R., Kollmann, A. & Bousquet, J.-F. ( 1988; ). Biological effects of sirodesmin PL, a phytotoxin produced by Leptosphaeria maculans. Plant Sci 57, 45–53.[CrossRef]
    [Google Scholar]
  57. Salvi, M., Bozac, A. & Toninello, A. ( 2004; ). Gliotoxin induces Mg2+ efflux from intact brain mitochondria. Neurochem Int 45, 759–764.[CrossRef]
    [Google Scholar]
  58. Schweizer, M. & Richter, C. ( 1994; ). Gliotoxin stimulates Ca2+ release from intact rat liver mitochondria. Biochemistry 33, 13401–13405.[CrossRef]
    [Google Scholar]
  59. Sekita, S., Yoshihira, K., Natori, S., Udagawa, S., Muroi, T., Sugiyama, Y., Kurata, H. & Umeda, M. ( 1981; ). Mycotoxin production by Chaetomium spp. and related fungi. Can J Microbiol 27, 766–772.[CrossRef]
    [Google Scholar]
  60. Serena, C., Ortoneda, M., Capilla, J., Pastor, F. J., Sutton, D. A., Rinaldi, M. G. & Guarro, J. ( 2003; ). In vitro activities of new antifungal agents against Chaetomium spp. and inoculum standardization. Antimicrob Agents Chemother 47, 3161–3164.[CrossRef]
    [Google Scholar]
  61. Seya, H., Nozawa, K., Udagawa, S., Nakajima, S. & Kawai, K. ( 1986; ). Studies on fungal products. IX. Dethiosecoemestrin, a new metabolite related to emestrin, from Emericella striata. Chem Pharm Bull 34, 2411–2416.[CrossRef]
    [Google Scholar]
  62. Shah, D. T. & Larsen, B. ( 1991; ). Clinical isolates of yeast produce a gliotoxin-like substance. Mycopathologia 116, 203–208.[CrossRef]
    [Google Scholar]
  63. Smith, D. J., Burnham, M. K., Edwards, J., Earl, A. J. & Turner, G. ( 1990; ). Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillum chrysogenum. Biotechnology 8, 39–41.[CrossRef]
    [Google Scholar]
  64. Sock, J. & Hoppe, H. H. ( 1999; ). Pathogenicity of sirodesmin-deficient mutants of Phoma lingam. J Phytopathol 147, 169–173.[CrossRef]
    [Google Scholar]
  65. Stillwell, M. A., Magasi, L. P. & Strunz, G. M. ( 1974; ). Production, isolation, and antimicrobial activity of hyalodendrin, a new antibiotic produced by a species of Hyalodendron. Can J Microbiol 20, 759–764.[CrossRef]
    [Google Scholar]
  66. Suhadolnik, R. J. & Chenoweth, R. G. ( 1958; ). Biosynthesis of gliotoxin. I. Incorporation of phenylalanine-1- and -2-C14. J Am Chem Soc 80, 4391–4392.[CrossRef]
    [Google Scholar]
  67. Sutton, P., Newcombe, N. R., Waring, P. & Mullbacher, A. ( 1994; ). In vivo immunosuppressive activity of gliotoxin, a metabolite produced by human pathogenic fungi. Infect Immun 62, 1192–1198.
    [Google Scholar]
  68. Takahashi, C., Numata, A., Matsumura, E., Minoura, K., Eto, H., Shingu, T., Ito, T. & Hasegawa, T. ( 1994; ). Leptosins I and J, cytotoxic substances produced by a Leptosphaeria sp. Physico-chemical properties and structures. J Antibiot 47, 1242–1249.[CrossRef]
    [Google Scholar]
  69. Trown, P. W. & Bilello, J. A. ( 1972; ). Mechanism of action of gliotoxin: elimination of activity by sulfhydryl compounds. Antimicrob Agents Chemother 2, 261–266.[CrossRef]
    [Google Scholar]
  70. Tsunawaki, S., Yoshida, L. S., Nishida, S., Kobayashi, M. & Shimoyama, T. ( 2004; ). Fungal toxin gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun 72, 3373–3382.[CrossRef]
    [Google Scholar]
  71. Tudzynski, P., Holter, K., Correia, T., Arntz, C., Grammel, N. & Keller, U. ( 1999; ). Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet 261, 133–141.[CrossRef]
    [Google Scholar]
  72. Van der Pyl, D., Inokoshi, J., Shiomi, K., Yang, H., Takeshima, H. & Omura, S. ( 1992; ). Inhibition of farnesyl-protein transferase by gliotoxin and acetylgliotoxin. J Antibiot 45, 1802–1805.[CrossRef]
    [Google Scholar]
  73. Vigushi, D. M., Mirsaidi, N., Brooke, G., Sun, C., Pace, P., Inman, L., Moody, C. J. & Coombes, R. C. ( 2004; ). Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. Med Oncol 21, 21–30.[CrossRef]
    [Google Scholar]
  74. Walton, J. D. ( 2000; ). Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30, 167–171.[CrossRef]
    [Google Scholar]
  75. Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E. & O'Donnell, K. ( 2002; ). Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci U S A 99, 9278–9283.[CrossRef]
    [Google Scholar]
  76. Waring, P., Mamchak, A., Khan, T., Sjaarda, A. & Sutton, P. ( 1995a; ). DNA synthesis precedes gliotoxin induced apoptosis. Cell Death Differ 2, 201–210.
    [Google Scholar]
  77. Waring, P., Sjaarda, A. & Lin, Q. H. ( 1995b; ). Gliotoxin inactivates alcohol dehydrogenase by either covalent modification or free radical damage mediated by redox cycling. Biochem Pharmacol 49, 1195–1201.[CrossRef]
    [Google Scholar]
  78. Weindling, R. ( 1941; ). Experimental consideration of the mold toxins of Gliocladium and Trichoderma. Phytopathology 31, 991–1003.
    [Google Scholar]
  79. Weindling, R. & Emerson, O. H. ( 1936; ). The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology 26, 1068–1070.
    [Google Scholar]
  80. Winstead, J. A. & Suhadolnik, R. J. ( 1960; ). Biosynthesis of gliotoxin. II. Further studies on the incorporation of carbon-14 and tritium-labeled precursors. J Am Chem Soc 82, 1644–1646.[CrossRef]
    [Google Scholar]
  81. Wright, M. C., Issa, R., Smart, D. E., Trim, N., Murray, G. I., Primrose, J. N., Arthur, M. J. P., Iredale, J. P. & Mann, D. A. ( 2001; ). Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis. Gastroenterology 121, 685–698.[CrossRef]
    [Google Scholar]
  82. Young, C., McMillan, L., Telfer, E. & Scott, B. ( 2001; ). Molecular cloning and genetic analysis of an indole-diterpene gene cluster from Penicillium paxilli. Mol Microbiol 39, 754–764.[CrossRef]
    [Google Scholar]
  83. Yu, J., Chang, P. K., Ehrlich, K. C. & 7 other authors ( 2004; ). Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70, 1253–1262.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27847-0
Loading
/content/journal/micro/10.1099/mic.0.27847-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error