1887

Abstract

The cell wall of Gram-positive bacteria has been a subject of detailed chemical study over the past five decades. Outside the cytoplasmic membrane of these organisms the fundamental polymer is peptidoglycan (PG), which is responsible for the maintenance of cell shape and osmotic stability. In addition, typical essential cell wall polymers such as teichoic or teichuronic acids are linked to some of the peptidoglycan chains. In this review these compounds are considered as ‘classical’ cell wall polymers. In the course of recent investigations of bacterial cell surface layers (S-layers) a different class of ‘non-classical’ secondary cell wall polymers (SCWPs) has been identified, which is involved in anchoring of S-layers to the bacterial cell surface. Comparative analyses have shown considerable differences in chemical composition, overall structure and charge behaviour of these SCWPs. This review discusses the progress that has been made in understanding the structural principles of SCWPs, which may have useful applications in S-layer-based ‘supramolecular construction kits' in nanobiotechnology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27749-0
2005-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510643.html?itemId=/content/journal/micro/10.1099/mic.0.27749-0&mimeType=html&fmt=ahah

References

  1. Altman, E., Brisson, J.-R., Messner, P. & Sleytr, U. B. ( 1990; ). Chemical characterization of the regularly arranged surface layer glycoprotein of Clostridium thermosaccharolyticum D120-70. Eur J Biochem 188, 73–82.[CrossRef]
    [Google Scholar]
  2. Altman, E., Schäffer, C., Brisson, J.-R. & Messner, P. ( 1996; ). Isolation and characterization of an amino sugar-rich glycopeptide from the surface layer glycoprotein of Thermoanaerobacterium thermosaccharolyticum E207-71. Carbohydr Res 295, 245–253.[CrossRef]
    [Google Scholar]
  3. Antikainen, J., Anton, L., Sillanpää, J. & Korhonen, T. K. ( 2002; ). Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly. Mol Microbiol 46, 381–394.[CrossRef]
    [Google Scholar]
  4. Araki, Y. & Ito, E. ( 1989; ). Linkage units in cell walls of Gram-positive bacteria. CRC Crit Rev Microbiol 17, 121–135.[CrossRef]
    [Google Scholar]
  5. Archibald, A. R., Baddiley, J. & Blumsom, N. L. ( 1968; ). The teichoic acids. Adv Enzymol 30, 223–253.
    [Google Scholar]
  6. Archibald, A. R., Hancock, I. C. & Harwood, C. R. ( 1993; ). Cell wall structure, synthesis and turnover. In Bacillus subtilis and Other Gram-Positive Bacteria, pp. 381–410. Edited by A. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  7. Baddiley, J. ( 1972; ). Teichoic acids in cell walls and membranes of bacteria. Essays Biochem 8, 35–77.
    [Google Scholar]
  8. Bayer, E. A., Belaich, J.-P., Shoham, Y. & Lamed, R. ( 2004; ). The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58, 521–554.[CrossRef]
    [Google Scholar]
  9. Cava, F., de Pedro, M. A., Schwarz, H., Henne, A. & Berenguer, J. ( 2004; ). Binding to pyruvylated compounds as an ancestral mechanism to anchor the outer envelope in primitive bacteria. Mol Microbiol 52, 677–690.[CrossRef]
    [Google Scholar]
  10. Egelseer, E. M., Danhorn, T., Pleschberger, M., Hotzy, C., Sleytr, U. B. & Sára, M. ( 2001; ). Characterization of an S-layer glycoprotein produced in the course of S-layer variation of Bacillus stearothermophilus ATCC 12980 and sequencing and cloning of the sbsD gene encoding the protein moiety. Arch Microbiol 177, 70–80.[CrossRef]
    [Google Scholar]
  11. Ellwood, D. C. & Tempest, D. W. ( 1969; ). Influence of growth environment on the cell wall anionic polymers in some Gram-positive bacteria. J Gen Microbiol 57, xv.
    [Google Scholar]
  12. Fischer, W. ( 1988; ). Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol 29, 233–302.
    [Google Scholar]
  13. Fischer, W. ( 1994; ). Lipoteichoic acids and lipoglycans. In Bacterial Cell Wall, pp. 199–215. Edited by J.-M. Ghuysen & R. Hakenbeck. Amsterdam: Elsevier.
  14. Fujino, T., Béguin, P. & Aubert, J. P. ( 1993; ). Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface. J Bacteriol 175, 1891–1899.
    [Google Scholar]
  15. Hancock, I. C. & Baddiley, J. ( 1985; ). Biosynthesis of the bacterial envelope polymers teichoic acid and teichuronic acid. In The Enzymes of Biological Membranes, vol. 2, 2nd edn, pp. 279–307. Edited by A. N. Martonosi. New York: Plenum.
  16. Huber, C., Ilk, N., Rünzler, D., Egelseer, E. M., Weigert, S., Sleytr, U. B. & Sára, M. ( 2005; ). The three S-layer-like homology motifs of the S-layer protein SbpA of Bacillus sphaericus CCM 2177 are not sufficient for binding to the pyruvylated secondary cell wall polymer. Mol Microbiol 55, 197–205.
    [Google Scholar]
  17. Ilk, N., Kosma, P., Puchberger, M., Egelseer, E. M., Mayer, H. F., Sleytr, U. B. & Sára, M. ( 1999; ). Structural and functional analyses of the secondary cell wall polymer of Bacillus sphaericus CCM 2177 that serves as an S-layer-specific anchor. J Bacteriol 181, 7643–7646.
    [Google Scholar]
  18. Jarosch, M., Egelseer, E. M., Mattanovich, D., Sleytr, U. B. & Sára, M. ( 2000; ). S-layer gene sbsC of Bacillus stearothermophilus ATCC 12980: molecular characterization and heterologous expression in Escherichia coli. Microbiology 146, 273–281.
    [Google Scholar]
  19. Jarosch, M., Egelseer, E. M., Huber, C., Moll, D., Mattanovich, D., Sleytr, U. B. & Sára, M. ( 2001; ). Analysis of the structure–function relationship of the S-layer protein SbsC of Bacillus stearothermophilus ATCC 12980 by producing truncated forms. Microbiology 147, 1353–1363.
    [Google Scholar]
  20. Kuen, B., Sleytr, U. B. & Lubitz, W. ( 1994; ). Sequence analysis of the sbsA gene encoding the 130-kDa surface layer protein of Bacillus stearothermophilus strain PV72. Gene 154, 115–120.
    [Google Scholar]
  21. Kuen, B., Koch, A., Asenbauer, E., Sára, M. & Lubitz, W. ( 1997; ). Molecular characterization of the Bacillus stearothermophilus PV72 S-layer gene sbsB induced by oxidative stress. J Bacteriol 179, 1664–1670.
    [Google Scholar]
  22. Lee, R. T. & Lee, Y. C. ( 2000; ). Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconjugate J 17, 543–551.[CrossRef]
    [Google Scholar]
  23. Liu, S.-Y., Gherardini, F. C., Matuschek, M., Bahl, H. & Wiegel, J. ( 1996; ). Cloning, sequencing, and expression of the gene encoding a large S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 in Escherichia coli. J Bacteriol 178, 1539–1547.
    [Google Scholar]
  24. Lupas, A., Engelhardt, H., Peters, J., Santarius, U., Volker, S. & Baumeister, W. ( 1994; ). Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J Bacteriol 176, 1224–1233.
    [Google Scholar]
  25. Mader, C., Huber, C., Moll, D., Sleytr, U. B. & Sára, M. ( 2004; ). Interaction of the crystalline bacterial cell surface layer protein SbsB and the secondary cell wall polymer of Geobacillus stearothermophilus PV72 assessed by real-time surface plasmon resonance biosensor technology. J Bacteriol 186, 1758–1768.[CrossRef]
    [Google Scholar]
  26. Masuda, K. & Kawata, T. ( 1985; ). Reassembly of a regularly arranged protein in the cell wall of Lactobacillus buchneri and its reattachment to cell walls: chemical modification studies. Microbiol Immunol 29, 927–938.
    [Google Scholar]
  27. Mesnage, S., Tosi-Couture, E., Mock, M. & Fouet, A. ( 1999; ). The S-layer homology domain as a means for anchoring heterologous proteins on the cell surface of Bacillus anthracis. J Appl Microbiol 87, 256–260.[CrossRef]
    [Google Scholar]
  28. Mesnage, S., Tosi-Couture, E., Mock, M., Gounon, P. & Fouet, A. ( 1997; ). Molecular characterization of the Bacillus anthracis S-layer component: evidence that it is the major cell-associated antigen. Mol Microbiol 23, 1147–1155.[CrossRef]
    [Google Scholar]
  29. Mesnage, S., Fontaine, T., Mignot, T., Delepierre, M., Mock, M. & Fouet, A. ( 2000; ). Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19, 4473–4484.[CrossRef]
    [Google Scholar]
  30. Messner, P. & Schäffer, C. ( 2003; ). Prokaryotic glycoproteins. In Progress in the Chemistry of Organic Natural Products, vol. 85, pp. 51–124. Edited by W. Herz, H. Falk & G. W. Kirby. Wien: Springer.
  31. Messner, P., Sleytr, U. B., Christian, R., Schulz, G. & Unger, F. M. ( 1987; ). Isolation and structure determination of a diacetamidodideoxyuronic acid-containing glycan chain from the S-layer glycoprotein of Bacillus stearothermophilus NRS 2004/3a. Carbohydr Res 168, 211–218.[CrossRef]
    [Google Scholar]
  32. Munson, R. S. & Glaser, L. ( 1981; ). Teichoic acid and peptidoglycan assembly in Gram-positive organisms. In Biology of Carbohydrates, vol. 1, pp. 91–121. Edited by V. Ginsburg & P. Robbins. New York: Wiley.
  33. Naumova, I. B. & Shashkov, A. S. ( 1997; ). Anionic polymers in cell walls of Gram-positive bacteria. Biochemistry (English translation of Biokhimya) 62, 809–840.
    [Google Scholar]
  34. Navarre, W. W. & Schneewind, O. ( 1999; ). Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63, 174–229.
    [Google Scholar]
  35. Novotny, R., Pfoestl, A., Messner, P. & Schäffer, C. ( 2004; ). Genetic organization of chromosomal S-layer glycan biosynthesis loci of Bacillaceae. Glycoconjugate J 20, 435–447.
    [Google Scholar]
  36. Olsthoorn, M. M., Petersen, B. O., Duus, J., Haverkamp, J., Thomas-Oates, J. E., Bock, K. & Holst, O. ( 2000; ). The structure of the linkage between the O-specific polysaccharide and the core region of the lipopolysaccharide from Salmonella enterica serovar Typhimurium revisited. Eur J Biochem 267, 2014–2027.[CrossRef]
    [Google Scholar]
  37. Pooley, H. M. & Karamata, D. ( 1994; ). Teichoic acid synthesis in Bacillus subtilis: genetic organisation and biological roles. In Bacterial Cell Wall, pp. 187–198. Edited by J.-M. Ghuysen & R. Hakenbeck. Amsterdam: Elsevier.
  38. Pum, D., Schuster, B., Sára, M. & Sleytr, U. B. ( 2004; ). Functionalisation of surfaces with S-layers. IEE Proc-Nanotechnol 151, 83–86.[CrossRef]
    [Google Scholar]
  39. Raetz, C. R. H. & Whitfield, C. ( 2002; ). Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 635–700.[CrossRef]
    [Google Scholar]
  40. Ries, W., Hotzy, C., Schocher, I., Sleytr, U. B. & Sára, M. ( 1997; ). Evidence for the N-terminal part of the S-layer protein from Bacillus stearothermophilus PV72/p2 recognizes a secondary cell wall polymer. J Bacteriol 179, 3892–3898.
    [Google Scholar]
  41. Rogers, H. J., Perkins, H. R. & Ward, J. B. ( 1980; ). Microbial Cell Walls and Membranes. London: Chapman & Hall.
  42. Sampathkumar, P. & Gilchrist, M. L. ( 2004; ). Synthesis and characterization of bioconjugates of S-layer proteins. Bioconjugate Chem 15, 685–693.[CrossRef]
    [Google Scholar]
  43. Sára, M. ( 2001; ). Conserved anchoring mechanisms between crystalline cell surface S-layer proteins and secondary cell wall polymers in Gram-positive bacteria. Trends Microbiol 9, 47–49.[CrossRef]
    [Google Scholar]
  44. Sára, M., Egelseer, E. M., Dekitsch, C. & Sleytr, U. B. ( 1998b; ). Identification of two binding domains, one for peptidoglycan and another for a secondary cell wall polymer on the N-terminal part of the S-layer protein SbsB from Bacillus stearothermophilus PV72/p2. J Bacteriol 180, 6780–6783.
    [Google Scholar]
  45. Sára, M., Dekitsch, C., Mayer, H. F., Egelseer, E. M. & Sleytr, U. B. ( 1998a; ). Influence of the secondary cell wall polymer on the reassembly, recrystallization, and stability properties of the S-layer protein from Bacillus stearothermophilus PV72/p2. J Bacteriol 180, 4146–4153.
    [Google Scholar]
  46. Schäffer, C. & Messner, P. ( 2004; ). Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology. Glycobiology 14, 31R–42R.[CrossRef]
    [Google Scholar]
  47. Schäffer, C., Kählig, H., Christian, R., Schulz, G., Zayni, S. & Messner, P. ( 1999; ). The diacetamidodideoxyuronic-acid-containing glycan chain of Bacillus stearothermophilus NRS 2004/3a represents the secondary cell wall polymer of wild-type B. stearothermophilus strains. Microbiology 145, 1575–1583.[CrossRef]
    [Google Scholar]
  48. Schäffer, C., Müller, N., Mandal, P. K., Christian, R., Zayni, S. & Messner, P. ( 2000; ). A pyrophosphate bridge links the pyruvate-containing secondary cell wall polymer of Paenibacillus alvei CCM 2051 to muramic acid. Glycoconjugate J 17, 681–690.[CrossRef]
    [Google Scholar]
  49. Schäffer, C., Graninger, M. & Messner, P. ( 2001; ). Prokaryotic glycosylation. Proteomics 1, 248–261.[CrossRef]
    [Google Scholar]
  50. Schäffer, C., Wugeditsch, T., Kählig, H., Scheberl, A., Zayni, S. & Messner, P. ( 2002; ). The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation. J Biol Chem 277, 6230–6239.[CrossRef]
    [Google Scholar]
  51. Schäffer, C., Steindl, C., Müller, N. & Messner, P. ( 2004; ). Structural biology of secondary cell wall polymers of S-layer glycoprotein-carrying bacteria. In Proceedings of the 22nd International Carbohydrate Symposium, Glasgow, abstract C33.
  52. Sleytr, U. B. ( 1976; ). Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. J Ultrastruct Res 55, 360–377.[CrossRef]
    [Google Scholar]
  53. Sleytr, U. B. ( 1978; ). Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function. Int Rev Cytol 53, 1–64.
    [Google Scholar]
  54. Sleytr, U. B., Messner, P., Pum, D. & Sára, M. (editors) ( 1996; ). Crystalline Bacterial Cell Surface Proteins. Austin, TX: R. G. Landes/Academic Press.
  55. Sleytr, U. B., Sára, M., Pum, D., Schuster, B., Messner, P. & Schäffer, C. ( 2002; ). Self-assembly protein systems: microbial S-layers. In Biopolymers, vol. 7, Polyamides and Complex Proteinaceous Matrices I, pp. 285–338. Edited by A. Steinbüchel & S. R. Fahnestock. Weinheim: Wiley-VCH.
  56. Smit, E., Oling, F., Demel, R., Martinez, B. & Pouwels, P. H. ( 2001; ). The S-layer protein of Lactobacillus acidophilus ATCC 4356: identification and characterisation of domains responsible for S-protein assembly and cell wall binding. J Mol Biol 305, 245–257.[CrossRef]
    [Google Scholar]
  57. Steindl, C., Schäffer, C., Wugeditsch, T., Graninger, M., Matecko, I., Müller, N. & Messner, P. ( 2002; ). The first biantennary bacterial secondary cell wall polymer from bacteria and its influence on S-layer glycoprotein assembly. Biochem J 368, 483–494.[CrossRef]
    [Google Scholar]
  58. Sumper, M. & Wieland, F. T. ( 1995; ). Bacterial glycoproteins. In Glycoproteins, pp. 455–473. Edited by J. Montreuil, J. F. G. Vliegenthart & H. Schachter. Amsterdam: Elsevier.
  59. Sutherland, I. W. ( 1999; ). Microbial polysaccharide products. Biotechnol Genet Eng Rev 16, 217–229.[CrossRef]
    [Google Scholar]
  60. Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G. & Marth, J. (editors) ( 1999; ). Essentials of Glycobiology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  61. Ward, J. B. ( 1981; ). Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiol Rev 45, 211–243.
    [Google Scholar]
  62. Wing, C., Kannathasan, V. S., Preston, A., Maskell, D., Wenzel, C. Q., Lam, J. S., Naismith, J. H. & Field, R. A. ( 2004; ). Characterization of WlbA (a putative 3-dehydrogenase) and WlbC (a putative 3-transaminase): two key enzymes involved in Bordetella pertussis UDP d-Man-diNAcA biosynthesis. Proceeding of the 22nd International Carbohydrate Symposium, Glasgow, abstract P431.
  63. Wugeditsch, T. ( 1998; ). Strukturanalyse des S-Schichtglykoproteinglykans und Zellwand-Aminozuckerpolymers von Aneurinibacillus thermoaerophilus DSM 10155. Doctoral thesis, Universität für Bodenkultur Wien.
  64. Yamamori, S., Murazumi, N., Araki, Y. & Ito, E. ( 1978; ). Formation and function of N-acetylglucosamine-linked phosphoryl- and pyrophosphorylundecaprenols in membranes from Bacillus cereus. J Biol Chem 253, 6516–6522.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27749-0
Loading
/content/journal/micro/10.1099/mic.0.27749-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error