1887

Abstract

The cell wall of Gram-positive bacteria has been a subject of detailed chemical study over the past five decades. Outside the cytoplasmic membrane of these organisms the fundamental polymer is peptidoglycan (PG), which is responsible for the maintenance of cell shape and osmotic stability. In addition, typical essential cell wall polymers such as teichoic or teichuronic acids are linked to some of the peptidoglycan chains. In this review these compounds are considered as ‘classical’ cell wall polymers. In the course of recent investigations of bacterial cell surface layers (S-layers) a different class of ‘non-classical’ secondary cell wall polymers (SCWPs) has been identified, which is involved in anchoring of S-layers to the bacterial cell surface. Comparative analyses have shown considerable differences in chemical composition, overall structure and charge behaviour of these SCWPs. This review discusses the progress that has been made in understanding the structural principles of SCWPs, which may have useful applications in S-layer-based ‘supramolecular construction kits' in nanobiotechnology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27749-0
2005-03-01
2020-04-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510643.html?itemId=/content/journal/micro/10.1099/mic.0.27749-0&mimeType=html&fmt=ahah

References

  1. Altman E., Brisson J.-R., Messner P., Sleytr U. B. 1990; Chemical characterization of the regularly arranged surface layer glycoprotein of Clostridium thermosaccharolyticum D120-70. Eur J Biochem188:73–82[CrossRef]
    [Google Scholar]
  2. Altman E., Brisson J.-R., Messner P, Schäffer C.. 1996; Isolation and characterization of an amino sugar-rich glycopeptide from the surface layer glycoprotein of Thermoanaerobacterium thermosaccharolyticum E207-71. Carbohydr Res295:245–253[CrossRef]
    [Google Scholar]
  3. Antikainen J., Anton L., Sillanpää J., Korhonen T. K. 2002; Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly. Mol Microbiol46:381–394[CrossRef]
    [Google Scholar]
  4. Araki Y., Ito E. 1989; Linkage units in cell walls of Gram-positive bacteria. CRC Crit Rev Microbiol17:121–135[CrossRef]
    [Google Scholar]
  5. Archibald A. R., Baddiley J., Blumsom N. L. 1968; The teichoic acids. Adv Enzymol30:223–253
    [Google Scholar]
  6. Archibald A. R., Hancock I. C., Harwood C. R. 1993; Cell wall structure, synthesis and turnover. In Bacillus subtilis and Other Gram-Positive Bacteria pp381–410 Edited by Sonenshein A., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Baddiley J. 1972; Teichoic acids in cell walls and membranes of bacteria. Essays Biochem8:35–77
    [Google Scholar]
  8. Bayer E. A., Belaich J.-P., Shoham Y., Lamed R. 2004; The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol58:521–554[CrossRef]
    [Google Scholar]
  9. Cava F., de Pedro M. A., Schwarz H., Henne A., Berenguer J. 2004; Binding to pyruvylated compounds as an ancestral mechanism to anchor the outer envelope in primitive bacteria. Mol Microbiol52:677–690[CrossRef]
    [Google Scholar]
  10. Egelseer E. M., Danhorn T., Pleschberger M., Hotzy C., Sleytr U. B., Sára M. 2001; Characterization of an S-layer glycoprotein produced in the course of S-layer variation of Bacillus stearothermophilus ATCC 12980 and sequencing and cloning of the sbsD gene encoding the protein moiety. Arch Microbiol177:70–80[CrossRef]
    [Google Scholar]
  11. Ellwood D. C., Tempest D. W. 1969; Influence of growth environment on the cell wall anionic polymers in some Gram-positive bacteria. J Gen Microbiol57:xv
    [Google Scholar]
  12. Fischer W. 1988; Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol29:233–302
    [Google Scholar]
  13. Fischer W. 1994; Lipoteichoic acids and lipoglycans. In Bacterial Cell Wall pp199–215 Edited by Ghuysen J.-M., Hakenbeck R.. Amsterdam: Elsevier;
    [Google Scholar]
  14. Fujino T., Béguin P., Aubert J. P. 1993; Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface. J Bacteriol175:1891–1899
    [Google Scholar]
  15. Hancock I. C., Baddiley J. 1985; Biosynthesis of the bacterial envelope polymers teichoic acid and teichuronic acid. In The Enzymes of Biological Membranes vol 2, 2nd edn. pp279–307 Edited by Martonosi A. N.. New York: Plenum;
    [Google Scholar]
  16. Huber C., Ilk N., Egelseer E. M., Weigert S., Sleytr U. B, Rünzler D., Sára M. 2005; The three S-layer-like homology motifs of the S-layer protein SbpA of Bacillus sphaericus CCM 2177 are not sufficient for binding to the pyruvylated secondary cell wall polymer. Mol Microbiol55:197–205
    [Google Scholar]
  17. Ilk N., Kosma P., Puchberger M., Egelseer E. M., Mayer H. F., Sleytr U. B., Sára M. 1999; Structural and functional analyses of the secondary cell wall polymer of Bacillus sphaericus CCM 2177 that serves as an S-layer-specific anchor. J Bacteriol181:7643–7646
    [Google Scholar]
  18. Jarosch M., Egelseer E. M., Mattanovich D., Sleytr U. B., Sára M. 2000; S-layer gene sbsC of Bacillus stearothermophilus ATCC 12980: molecular characterization and heterologous expression inEscherichia coli. Microbiology146:273–281
    [Google Scholar]
  19. Jarosch M., Egelseer E. M., Huber C., Moll D., Mattanovich D., Sleytr U. B, Sára M. 2001; Analysis of the structure–function relationship of the S-layer protein SbsC of Bacillus stearothermophilus ATCC 12980 by producing truncated forms. Microbiology147:1353–1363
    [Google Scholar]
  20. Kuen B., Sleytr U. B., Lubitz W. 1994; Sequence analysis of the sbsA gene encoding the 130-kDa surface layer protein of Bacillus stearothermophilus strain PV72. Gene154:115–120
    [Google Scholar]
  21. Kuen B., Koch A., Asenbauer E., Lubitz W, Sára M.. 1997; Molecular characterization of the Bacillus stearothermophilus PV72 S-layer gene sbsB induced by oxidative stress. J Bacteriol179:1664–1670
    [Google Scholar]
  22. Lee R. T., Lee Y. C. 2000; Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconjugate J17:543–551[CrossRef]
    [Google Scholar]
  23. Liu S.-Y., Gherardini F. C., Matuschek M., Bahl H., Wiegel J. 1996; Cloning, sequencing, and expression of the gene encoding a large S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 in Escherichia coli. J Bacteriol178:1539–1547
    [Google Scholar]
  24. Lupas A., Engelhardt H., Peters J., Santarius U., Volker S., Baumeister W. 1994; Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J Bacteriol176:1224–1233
    [Google Scholar]
  25. Mader C., Huber C., Moll D., Sleytr U. B., Sára M. 2004; Interaction of the crystalline bacterial cell surface layer protein SbsB and the secondary cell wall polymer of Geobacillus stearothermophilus PV72 assessed by real-time surface plasmon resonance biosensor technology. J Bacteriol186:1758–1768[CrossRef]
    [Google Scholar]
  26. Masuda K., Kawata T. 1985; Reassembly of a regularly arranged protein in the cell wall of Lactobacillus buchneri and its reattachment to cell walls: chemical modification studies. Microbiol Immunol29:927–938
    [Google Scholar]
  27. Mesnage S., Tosi-Couture E., Mock M., Fouet A. 1999; The S-layer homology domain as a means for anchoring heterologous proteins on the cell surface of Bacillus anthracis. J Appl Microbiol87:256–260[CrossRef]
    [Google Scholar]
  28. Mesnage S., Tosi-Couture E., Mock M., Gounon P., Fouet A. 1997; Molecular characterization of the Bacillus anthracis S-layer component: evidence that it is the major cell-associated antigen. Mol Microbiol23:1147–1155[CrossRef]
    [Google Scholar]
  29. Mesnage S., Fontaine T., Mignot T., Delepierre M., Mock M., Fouet A. 2000; Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J19:4473–4484[CrossRef]
    [Google Scholar]
  30. Messner P, Schäffer C. 2003; Prokaryotic glycoproteins. In Progress in the Chemistry of Organic Natural Products vol 85 pp51–124 Edited by Herz W., Falk H., Kirby G. W.. Wien: Springer;
    [Google Scholar]
  31. Messner P., Sleytr U. B., Christian R., Schulz G., Unger F. M. 1987; Isolation and structure determination of a diacetamidodideoxyuronic acid-containing glycan chain from the S-layer glycoprotein of Bacillus stearothermophilus NRS 2004/3a. Carbohydr Res168:211–218[CrossRef]
    [Google Scholar]
  32. Munson R. S., Glaser L. 1981; Teichoic acid and peptidoglycan assembly in Gram-positive organisms. In Biology of Carbohydrates vol 1 pp91–121 Edited by Ginsburg V., Robbins P.. New York: Wiley;
    [Google Scholar]
  33. Naumova I. B., Shashkov A. S. 1997; Anionic polymers in cell walls of Gram-positive bacteria. Biochemistry (English translation of Biokhimya 62809–840
  34. Navarre W. W., Schneewind O. 1999; Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev63:174–229
    [Google Scholar]
  35. Novotny R., Pfoestl A., Messner P., Schäffer C. 2004; Genetic organization of chromosomal S-layer glycan biosynthesis loci of Bacillaceae. Glycoconjugate J20:435–447
    [Google Scholar]
  36. Olsthoorn M. M., Petersen B. O., Duus J., Haverkamp J., Thomas-Oates J. E., Bock K., Holst O. 2000; The structure of the linkage between the O-specific polysaccharide and the core region of the lipopolysaccharide from Salmonella enterica serovar Typhimurium revisited. Eur J Biochem267:2014–2027[CrossRef]
    [Google Scholar]
  37. Pooley H. M., Karamata D. 1994; Teichoic acid synthesis in Bacillus subtilis: genetic organisation and biological roles. In Bacterial Cell Wall pp187–198 Edited by Ghuysen J.-M., Hakenbeck R.. Amsterdam: Elsevier;
    [Google Scholar]
  38. Pum D., Schuster B., Sleytr U. B, Sára M.. 2004; Functionalisation of surfaces with S-layers. IEE Proc-Nanotechnol151:83–86[CrossRef]
    [Google Scholar]
  39. Raetz C. R. H., Whitfield C. 2002; Lipopolysaccharide endotoxins. Annu Rev Biochem71:635–700[CrossRef]
    [Google Scholar]
  40. Ries W., Hotzy C., Schocher I., Sleytr U. B., Sára M. 1997; Evidence for the N-terminal part of the S-layer protein from Bacillus stearothermophilus PV72/p2 recognizes a secondary cell wall polymer. J Bacteriol179:3892–3898
    [Google Scholar]
  41. Rogers H. J., Perkins H. R., Ward J. B. 1980; Microbial Cell Walls and Membranes London: Chapman & Hall;
    [Google Scholar]
  42. Sampathkumar P., Gilchrist M. L. 2004; Synthesis and characterization of bioconjugates of S-layer proteins. Bioconjugate Chem15:685–693[CrossRef]
    [Google Scholar]
  43. Sára M. 2001; Conserved anchoring mechanisms between crystalline cell surface S-layer proteins and secondary cell wall polymers in Gram-positive bacteria. Trends Microbiol9:47–49[CrossRef]
    [Google Scholar]
  44. Sára M., Egelseer E. M., Dekitsch C., Sleytr U. B. 1998b; Identification of two binding domains, one for peptidoglycan and another for a secondary cell wall polymer on the N-terminal part of the S-layer protein SbsB from Bacillus stearothermophilus PV72/p2. J Bacteriol180:6780–6783
    [Google Scholar]
  45. Sára M., Dekitsch C., Mayer H. F., Egelseer E. M., Sleytr U. B. 1998a; Influence of the secondary cell wall polymer on the reassembly, recrystallization, and stability properties of the S-layer protein from Bacillus stearothermophilus PV72/p2. J Bacteriol180:4146–4153
    [Google Scholar]
  46. Schäffer C., Messner P. 2004; Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology. Glycobiology14:31R–42R[CrossRef]
    [Google Scholar]
  47. Schäffer C., Kählig H., Christian R., Schulz G., Zayni S., Messner P. 1999; The diacetamidodideoxyuronic-acid-containing glycan chain of Bacillus stearothermophilus NRS 2004/3a represents the secondary cell wall polymer of wild-typeB. stearothermophilus strains. Microbiology145:1575–1583[CrossRef]
    [Google Scholar]
  48. Schäffer C., Müller N., Mandal P. K., Christian R., Zayni S., Messner P. 2000; A pyrophosphate bridge links the pyruvate-containing secondary cell wall polymer of Paenibacillus alvei CCM 2051 to muramic acid. Glycoconjugate J17:681–690[CrossRef]
    [Google Scholar]
  49. Schäffer C., Graninger M., Messner P. 2001; Prokaryotic glycosylation. Proteomics1:248–261[CrossRef]
    [Google Scholar]
  50. Schäffer C., Wugeditsch T., Zayni S., Messner P, Kählig H., Scheberl A.. 2002; The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation. J Biol Chem277:6230–6239[CrossRef]
    [Google Scholar]
  51. Schäffer C., Steindl C., Müller N., Messner P. 2004; Structural biology of secondary cell wall polymers of S-layer glycoprotein-carrying bacteria. In Proceedings of the 22nd International Carbohydrate Symposium Glasgow, abstract C33:
    [Google Scholar]
  52. Sleytr U. B. 1976; Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. J Ultrastruct Res55:360–377[CrossRef]
    [Google Scholar]
  53. Sleytr U. B. 1978; Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function. Int Rev Cytol53:1–64
    [Google Scholar]
  54. Sleytr U. B., Messner P., Pum D, Sára M.. (editors) 1996; Crystalline Bacterial Cell Surface Proteins Austin, TX: R. G. Landes/Academic Press;
    [Google Scholar]
  55. Sleytr U. B., Pum D., Schuster B., Messner P, Schäffer C, Sára M.. 2002; Self-assembly protein systems: microbial S-layers.. In Biopolymers, vol. 7, Polyamides and Complex Proteinaceous Matrices I pp285–338 Edited by Steinbüchel A., Fahnestock S. R.. Weinheim: Wiley-VCH;
    [Google Scholar]
  56. Smit E., Oling F., Demel R., Martinez B., Pouwels P. H. 2001; The S-layer protein of Lactobacillus acidophilus ATCC 4356: identification and characterisation of domains responsible for S-protein assembly and cell wall binding. J Mol Biol305:245–257[CrossRef]
    [Google Scholar]
  57. Steindl C., Wugeditsch T., Graninger M., Matecko I., Müller N., Messner P, Schäffer C.. 2002; The first biantennary bacterial secondary cell wall polymer from bacteria and its influence on S-layer glycoprotein assembly. Biochem J368:483–494[CrossRef]
    [Google Scholar]
  58. Sumper M., Wieland F. T. 1995; Bacterial glycoproteins. In Glycoproteins pp455–473 Edited by Montreuil J., Vliegenthart J. F. G., Schachter H.. Amsterdam: Elsevier;
    [Google Scholar]
  59. Sutherland I. W. 1999; Microbial polysaccharide products. Biotechnol Genet Eng Rev16:217–229[CrossRef]
    [Google Scholar]
  60. Varki A., Cummings R., Esko J., Freeze H., Hart G., Marth J. (editors) 1999; Essentials of Glycobiology Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  61. Ward J. B. 1981; Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiol Rev45:211–243
    [Google Scholar]
  62. Wing C., Kannathasan V. S., Preston A., Maskell D., Wenzel C. Q., Lam J. S., Naismith J. H., Field R. A. 2004; Characterization of WlbA (a putative 3-dehydrogenase) and WlbC (a putative 3-transaminase): two key enzymes involved inBordetella pertussis UDP d-Man-diNAcA biosynthesis. Proceeding of the 22nd International Carbohydrate Symposium Glasgow, abstractP431
    [Google Scholar]
  63. Wugeditsch T. 1998; Strukturanalyse des S-Schichtglykoproteinglykans und Zellwand-Aminozuckerpolymers von Aneurinibacillus thermoaerophilus DSM 10155 Doctoral thesis Universität für Bodenkultur Wien;
    [Google Scholar]
  64. Yamamori S., Murazumi N., Araki Y., Ito E. 1978; Formation and function of N-acetylglucosamine-linked phosphoryl- and pyrophosphorylundecaprenols in membranes from Bacillus cereus. J Biol Chem253:6516–6522
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27749-0
Loading
/content/journal/micro/10.1099/mic.0.27749-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error