1887

Abstract

The human fungal pathogen responds to stress by phosphorylation of the Hog1 MAP kinase. was cloned and shown to encode the MAP kinase kinase that is involved in this activation, as determined by immunoblot analyses using antibodies that recognize the active form of the target Hog1 protein. Characterization of mutants revealed that they were sensitive to both osmotic and oxidative stress and that they, interestingly, displayed differential behaviour from that of mutants, losing viability when exposed to an oxidative challenge more rapidly than the strain. Hog1 and Pbs2 were also shown to be involved in the mechanism of adaptation to oxidative stress, as evidenced by the enhanced susceptibility to oxidants of and mutants, compared with the wild-type strain, when cells were previously exposed to a low, sub-lethal concentration of hydrogen peroxide and by the -dependent diminished activation of Hog1 MAP kinase in the adaptive process. Studies with a chimaeric Hog1–green fluorescent protein fusion revealed that this protein was localized throughout the cell (being excluded from the vacuole), but concentrated in the nucleus in response to NaCl stress, a process that was dependent on the Pbs2 protein. Both Hog1 and Pbs2 also play a role in controlling the phosphorylation state of the other MAP kinases Mkc1 and Cek1, involved respectively in cell-wall integrity and invasive growth. Furthermore, it is demonstrated that plays a role in cell-wall biogenesis in this fungal pathogen, as its deletion renders cells with an altered susceptibility to certain cell wall-interfering compounds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27723-0
2005-04-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511033.html?itemId=/content/journal/micro/10.1099/mic.0.27723-0&mimeType=html&fmt=ahah

References

  1. Albertyn, J., Hohmann, S., Thevelein, J. M. & Prior, B. A. ( 1994; ). GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14, 4135–4144.
    [Google Scholar]
  2. Alonso-Monge, R., Navarro-García, F., Molero, G., Diez-Orejas, R., Gustin, M., Pla, J., Sánchez, M. & Nombela, C. ( 1999; ). Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181, 3058–3068.
    [Google Scholar]
  3. Alonso-Monge, R., Real, E., Wojda, I., Bebelman, J.-P., Mager, W. H. & Siderius, M. ( 2001; ). Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects. Mol Microbiol 41, 717–730.[CrossRef]
    [Google Scholar]
  4. Alonso-Monge, R., Navarro-García, F., Román, E., Negredo, A. I., Eisman, B., Nombela, C. & Pla, J. ( 2003; ). The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2, 351–361.[CrossRef]
    [Google Scholar]
  5. Banuett, F. ( 1998; ). Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev 62, 249–274.
    [Google Scholar]
  6. Bilsland, E., Molin, C., Swaminathan, S., Ramne, A. & Sunnerhagen, P. ( 2004; ). Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol Microbiol 53, 1743–1756.[CrossRef]
    [Google Scholar]
  7. Bilsland-Marchesan, E., Ariño, J., Saito, H., Sunnerhagen, P. & Posas, F. ( 2000; ). Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1. Mol Cell Biol 20, 3887–3895.[CrossRef]
    [Google Scholar]
  8. Brewster, J. L. & Gustin, M. C. ( 1994; ). Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway. Yeast 10, 425–439.[CrossRef]
    [Google Scholar]
  9. Brewster, J. L., de Valoir, T., Dwyer, N. D., Winter, E. & Gustin, M. C. ( 1993; ). An osmosensing signal transduction pathway in yeast. Science 259, 1760–1763.[CrossRef]
    [Google Scholar]
  10. Calera, J. A., Herman, D. & Calderone, R. ( 2000a; ). Identification of YPD1, a gene of Candida albicans which encodes a two-component phosphohistidine intermediate protein. Yeast 16, 1053–1059.[CrossRef]
    [Google Scholar]
  11. Calera, J. A., Zhao, X.-J. & Calderone, R. ( 2000b; ). Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect Immun 68, 518–525.[CrossRef]
    [Google Scholar]
  12. Chauhan, N., Inglis, D., Roman, E., Pla, J., Li, D., Calera, J. A. & Calderone, R. ( 2003; ). Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot Cell 2, 1018–1024.[CrossRef]
    [Google Scholar]
  13. Chen, J., Chen, J., Lane, S. & Liu, H. ( 2002; ). A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans. Mol Microbiol 46, 1335–1344.[CrossRef]
    [Google Scholar]
  14. Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A. R., Falkow, S. & Brown, A. J. P. ( 1997; ). Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143, 303–311.[CrossRef]
    [Google Scholar]
  15. Costa, V. M. V., Amorim, M. A., Quintanilha, A. & Moradas-Ferreira, P. ( 2002; ). Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radic Biol Med 33, 1507–1515.[CrossRef]
    [Google Scholar]
  16. Csank, C., Schröppel, K., Leberer, E., Harcus, D., Mohamed, O., Meloche, S., Thomas, D. Y. & Whiteway, M. ( 1998; ). Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66, 2713–2721.
    [Google Scholar]
  17. Davenport, K. R., Sohaskey, M., Kamada, Y., Levin, D. E. & Gustin, M. C. ( 1995; ). A second osmosensing signal transduction pathway in yeast: hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. J Biol Chem 270, 30157–30161.[CrossRef]
    [Google Scholar]
  18. Fox, J. L. ( 1993; ). Fungal infection rates are increasing. ASM News 10, 515–518.
    [Google Scholar]
  19. Galcheva-Gargova, Z., Dérijard, B., Wu, I.-H. & Davis, R. J. ( 1994; ). An osmosensing signal transduction pathway in mammalian cells. Science 265, 806–808.[CrossRef]
    [Google Scholar]
  20. García-Rodriguez, L. J., Durán, A. & Roncero, C. ( 2000; ). Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions. J Bacteriol 182, 2428–2437.[CrossRef]
    [Google Scholar]
  21. Gerami-Nejad, M., Berman, J. & Gale, C. A. ( 2001; ). Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast 18, 859–864.[CrossRef]
    [Google Scholar]
  22. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. ( 1992; ). Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077–1090.[CrossRef]
    [Google Scholar]
  23. Gustin, M. C., Albertyn, J., Alexander, M. & Davenport, K. ( 1998; ). MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62, 1264–1300.
    [Google Scholar]
  24. Haghnazari, E. & Heyer, W.-D. ( 2004; ). The Hog1 MAP kinase pathway and the Mec1 DNA damage checkpoint pathway independently control the cellular responses to hydrogen peroxide. DNA Repair (Amst) 3, 769–776.[CrossRef]
    [Google Scholar]
  25. Hoefen, R. J. & Berk, B. C. ( 2002; ). The role of MAP kinases in endothelial activation. Vascul Pharmacol 38, 271–273.[CrossRef]
    [Google Scholar]
  26. Jamieson, D. J., Stephen, D. W. S. & Terrière, E. C. ( 1996; ). Analysis of the adaptive oxidative stress response of Candida albicans. FEMS Microbiol Lett 138, 83–88.[CrossRef]
    [Google Scholar]
  27. Jiang, B., Ram, A. F. J., Sheraton, J., Klis, F. M. & Bussey, H. ( 1995; ). Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Mol Gen Genet 248, 260–269.[CrossRef]
    [Google Scholar]
  28. Jiang, L., Niu, S., Clines, K. L., Burke, D. J. & Sturgill, T. W. ( 2004; ). Analyses of the effects of Rck2p mutants on Pbs2pDD-induced toxicity in Saccharomyces cerevisiae identify a MAP kinase docking motif, and unexpected functional inactivation due to acidic substitution of T379. Mol Genet Genomics 271, 208–219.[CrossRef]
    [Google Scholar]
  29. Kamada, Y., Jung, U. S., Piotrowski, J. & Levin, D. E. ( 1995; ). The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9, 1559–1571.[CrossRef]
    [Google Scholar]
  30. Kapteyn, J. C., Ter Riet, B., Vink, E., Blad, S., De Nobel, H., Van Den Ende, H. & Klis, F. M. ( 2001; ). Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39, 469–480.[CrossRef]
    [Google Scholar]
  31. Kirsch, D. R. & Whitney, R. R. ( 1991; ). Pathogenicity of Candida albicans auxotrophic mutants in experimental infections. Infect Immun 59, 3297–3300.
    [Google Scholar]
  32. Köhler, G. A., White, T. C. & Agabian, N. ( 1997; ). Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179, 2331–2338.
    [Google Scholar]
  33. Kruppa, M., Goins, T., Cutler, J. E. & 7 other authors ( 2003; ). The role of the Candida albicans histidine kinase (CHK1) gene in the regulation of cell wall mannan and glucan biosynthesis. FEMS Yeast Res 3, 289–299.
    [Google Scholar]
  34. Kruppa, M., Jabra-Rizk, M. A., Meiller, T. F. & Calderone, R. ( 2004; ). The histidine kinases of Candida albicans: regulation of cell wall mannan biosynthesis. FEMS Yeast Res 4, 409–416.[CrossRef]
    [Google Scholar]
  35. Kültz, D. & Burg, M. ( 1998; ). Evolution of osmotic stress signaling via MAP kinase cascades. J Exp Biol 201, 3015–3021.
    [Google Scholar]
  36. Kyriakis, J. M. & Avruch, J. ( 1996; ). Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays 18, 567–577.[CrossRef]
    [Google Scholar]
  37. Lai, M. H., Silverman, S. J., Gaughran, J. P. & Kirsch, D. R. ( 1997; ). Multiple copies of PBS2, MHP1 or LRE1 produce glucanase resistance and other cell wall effects in Saccharomyces cerevisiae. Yeast 13, 199–213.[CrossRef]
    [Google Scholar]
  38. Liu, H., Köhler, J. & Fink, G. R. ( 1994; ). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723–1726.[CrossRef]
    [Google Scholar]
  39. Madhani, H. D., Styles, C. A. & Fink, G. R. ( 1997; ). MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91, 673–684.[CrossRef]
    [Google Scholar]
  40. Maeda, T., Takekawa, M. & Saito, H. ( 1995; ). Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269, 554–558.[CrossRef]
    [Google Scholar]
  41. Martín, H., Rodríguez-Pachón, J. M., Ruiz, C., Nombela, C. & Molina, M. ( 2000; ). Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 275, 1511–1519.[CrossRef]
    [Google Scholar]
  42. Millar, J. B. A. ( 1999; ). Stress-activated MAP kinase (mitogen-activated protein kinase) pathways of budding and fission yeasts. Biochem Soc Symp 64, 49–62.
    [Google Scholar]
  43. Millar, J. B. A., Buck, V. & Wilkinson, M. G. ( 1995; ). Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev 9, 2117–2130.[CrossRef]
    [Google Scholar]
  44. Munro, C. A., Whitton, R. K., Hughes, H. B., Rella, M., Selvaggini, S. & Gow, N. A. R. ( 2003; ). CHS8 – a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal Genet Biol 40, 146–158.[CrossRef]
    [Google Scholar]
  45. Navarro-García, F., Sánchez, M., Pla, J. & Nombela, C. ( 1995; ). Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol 15, 2197–2206.
    [Google Scholar]
  46. Navarro-García, F., Alonso-Monge, R., Rico, H., Pla, J., Sentandreu, R. & Nombela, C. ( 1998; ). A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology 144, 411–424.[CrossRef]
    [Google Scholar]
  47. NCCLS ( 1992; ). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast: Proposed Standard M27-P. Villanova, PA: National Committee for Clinical Laboratory Standards.
  48. Negredo, A., Monteoliva, L., Gil, C., Pla, J. & Nombela, C. ( 1997; ). Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology 143, 297–302.[CrossRef]
    [Google Scholar]
  49. Odds, F. C. ( 1988; ). Candida and Candidosis. London: Baillière Tindall.
  50. O'Rourke, S. M. & Herskowitz, I. ( 1998; ). The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12, 2874–2886.[CrossRef]
    [Google Scholar]
  51. Pla, J., Pérez-Díaz, R. M., Navarro-García, F., Sánchez, M. & Nombela, C. ( 1995; ). Cloning of the Candida albicans HIS1 gene by direct complementation of a C. albicans histidine auxotroph using an improved double-ARS shuttle vector. Gene 165, 115–120.[CrossRef]
    [Google Scholar]
  52. Popolo, L. & Vai, M. ( 1998; ). Defects in assembly of the extracellular matrix are responsible for altered morphogenesis of a Candida albicans phr1 mutant. J Bacteriol 180, 163–166.
    [Google Scholar]
  53. Posas, F. & Saito, H. ( 1997; ). Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702–1705.[CrossRef]
    [Google Scholar]
  54. Posas, F., Takekawa, M. & Saito, H. ( 1998; ). Signal transduction by MAP kinase cascades in budding yeast. Curr Opin Microbiol 1, 175–182.[CrossRef]
    [Google Scholar]
  55. Samejima, I., Mackie, S. & Fantes, P. A. ( 1997; ). Multiple modes of activation of the stress-responsive MAP kinase pathway in fission yeast. EMBO J 16, 6162–6170.[CrossRef]
    [Google Scholar]
  56. Sánchez-Piris, M., Posas, F., Alemany, V., Winge, I., Hidalgo, E., Bachs, O. & Aligue, R. ( 2002; ). The serine/threonine kinase Cmk2 is required for oxidative stress response in fission yeast. J Biol Chem 277, 17722–17727.[CrossRef]
    [Google Scholar]
  57. San José, C., Alonso-Monge, R., Pérez-Díaz, R., Pla, J. & Nombela, C. ( 1996; ). The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol 178, 5850–5852.
    [Google Scholar]
  58. Shiozaki, K. & Russell, P. ( 1995; ). Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378, 739–743.[CrossRef]
    [Google Scholar]
  59. Shiozaki, K. & Russell, P. ( 1996; ). Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev 10, 2276–2288.[CrossRef]
    [Google Scholar]
  60. Singh, K. K. ( 2000; ). The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion. Free Radic Biol Med 29, 1043–1050.[CrossRef]
    [Google Scholar]
  61. Smith, D. A., Nicholls, S., Morgan, B. A., Brown, A. J. P. & Quinn, J. ( 2004; ). A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15, 4179–4190.[CrossRef]
    [Google Scholar]
  62. Soto, T., Beltrán, F. F., Paredes, V., Madrid, M., Millar, J. B. A., Vicente-Soler, J., Cansado, J. & Gacto, M. ( 2002; ). Cold induces stress-activated protein kinase-mediated response in the fission yeast Schizosaccharomyces pombe. Eur J Biochem 269, 5056–5065.[CrossRef]
    [Google Scholar]
  63. Tatebayashi, K., Takekawa, M. & Saito, H. ( 2003; ). A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO J 22, 3624–3634.[CrossRef]
    [Google Scholar]
  64. Teige, M., Scheikl, E., Reiser, V., Ruis, H. & Ammerer, G. ( 2001; ). Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci U S A 98, 5625–5630.[CrossRef]
    [Google Scholar]
  65. Vilella, F., Herrero, E., Torres, J. & de la Torre-Ruiz, M. A. ( 2005; ). Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress. J Biol Chem (in press).
    [Google Scholar]
  66. Yamada-Okabe, T., Mio, T., Ono, N., Kashima, Y., Matsui, M., Arisawa, M. & Yamada-Okabe, H. ( 1999; ). Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol 181, 7243–7247.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27723-0
Loading
/content/journal/micro/10.1099/mic.0.27723-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error