1887

Abstract

The expression of the transcriptional regulatory protein LasR, a main component of the quorum-sensing (QS) system in , was recently found to be sensitive to several environmental factors in addition to its dependency on cell density. However, the inherent effects of the different factors have seldom been separately demonstrated due to concurrent changes of culture conditions in typical experimental settings. Furthermore, the interplays of the different factors are unknown. In this work, the effects and interplay of iron concentration and dissolved oxygen tension (pO) on the expression of in were studied in defined growth media with varied iron concentration and pO values in computer-controlled batch and continuous cultures. -Galactosidase activity in a recombinant PAO1 (NCCB 2452) strain with a fusion was used as a reporter for expression. In batch culture with a constant pO≈10 % air saturation, a strong correlation between the exhaustion of iron and the increase of expression was observed. In continuous culture with nearly constant cell density but varied pO values, expression generally increased with increasing oxidative stress with the exception of growth under O-limited conditions (pO≈0 %). Under O limitation, the expression of strongly depended on the concentration of iron. It showed a nearly twofold increase in cells grown under iron deprivation in comparison with cells grown in iron-replete conditions and reached the expression level seen at high oxidative stress. A preliminary proteomic analysis was carried out for extracellular proteins in samples from batch cultures grown under different iron concentrations. Several of the extracellular proteins (e.g. AprA, LasB, PrpL) which were up-regulated under iron-limited conditions were found to be QS regulated proteins. Thus, this study clearly shows the links between QS and genes involved in iron and oxygen regulation in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27566-0
2005-04-01
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511127.html?itemId=/content/journal/micro/10.1099/mic.0.27566-0&mimeType=html&fmt=ahah

References

  1. Albus A. M., Pesci E. C., Runyen-Janecky L. J., West S. E., Iglewski B. H. 1997; Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol179:3928–3935
    [Google Scholar]
  2. Ankenbauer R., Sriyosachati S., Cox C. D. 1985; Effects of siderophores on the growth of Pseudomonas aeruginosa in human serum and transferrin. Infect Immun49:132–140
    [Google Scholar]
  3. Arevalo-Ferro C., Hentzer M., Reil G., Kjelleberg S., Givskov M., Riedel K., Eberl L, Görg A.. 2003; Identification of quorum sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environ Microbiol5:1350–1369[CrossRef]
    [Google Scholar]
  4. Beveridge T. J. 1999; Structure of gram negative cell walls and their derived membrane vesicles. J Bacteriol181:4725–4733
    [Google Scholar]
  5. Bollinger N., Hassett D. J., Iglewski B. H., Costerton J. W., McDermott T. R. 2001; Gene expression in Pseudomonas aeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. J Bacteriol183:1990–1996[CrossRef]
    [Google Scholar]
  6. Cornelis P., Aendekerk S. 2004; A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa. Microbiology150:752–756[CrossRef]
    [Google Scholar]
  7. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322[CrossRef]
    [Google Scholar]
  8. Drake D., Montie T. C. 1988; Flagella, motility and invasive virulence of Pseudomonas aeruginosa. J Gen Microbiol134:43–52
    [Google Scholar]
  9. Farinha M. A., Kropinski A. M. 1990; Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol172:3496–3499
    [Google Scholar]
  10. Feldman M., Bryan R., Rajan S., Scheffler L., Brunnert S., Tang H., Prince A. 1998; Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun66:43–51
    [Google Scholar]
  11. Frederick J. R., Elkins J. G., Bollinger N., Hassett D. J., McDermott T. R. 2001; Factors affecting catalase expression in Pseudomonas aeruginosa biofilms and planktonic cells. Appl Environ Microbiol67:1375–1379[CrossRef]
    [Google Scholar]
  12. Fuqua C., Greenberg E. P. 1998; Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr Opin Microbiol1:183–189[CrossRef]
    [Google Scholar]
  13. Haas B., Kraut J., Marks J., Zanker S. C., Castigenetti D. 1991; Siderophore presence in sputa of cystic fibrosis patients. Infect Immun59:3997–4000
    [Google Scholar]
  14. Hassett D. J., Ma J. F., Elkins J. G.. 10 other authors 1999; Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol34:1082–1093[CrossRef]
    [Google Scholar]
  15. Hassett D. J., Cuppoletti J., Trapnell B.. 10 other authors 2002; Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev54:1425–1443[CrossRef]
    [Google Scholar]
  16. Hentzer M., Wu H., Andersen J. B.. 15 other authors 2003; Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J22:3803–3815[CrossRef]
    [Google Scholar]
  17. Hybiske K., Ichikawa J. K., Huang V., Lory S. J., Machen T. E. 2004; Cystic fibrosis airway epithelial cell polarity and bacterial flagellin determine host response to Pseudomonas aeruginosa. Cell Microbiol6:49–63[CrossRef]
    [Google Scholar]
  18. Juhas M., Wiehlmann L., Huber B.. 8 other authors 2004; Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology150:831–841[CrossRef]
    [Google Scholar]
  19. Kessler E., Safrin M., Olsan J. C., Ohman D. E. 1993; Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem268:7503–7508
    [Google Scholar]
  20. Kim E.-J., Sabra W., Zeng A.-P. 2003; Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. Microbiology149:2627–2634[CrossRef]
    [Google Scholar]
  21. Lamont I. L., Beare P. A., Ochsner U., Vasil A. I., Vasil M. L. 2002; Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A99:7072–7077[CrossRef]
    [Google Scholar]
  22. Lyczak J. B., Cannon C. L., Pier G. B. 2002; Lung infections associated with cystic fibrosis. Clin Microbiol Rev15:194–222[CrossRef]
    [Google Scholar]
  23. Mathee K., Ciofu O., Sternberg C.. 9 other authors 1999; Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology145:1349–1357[CrossRef]
    [Google Scholar]
  24. McMorran B. J., Kumara H. M., Sullivan K., Lamont I. L. 2001; Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa. Microbiology147:1517–1524
    [Google Scholar]
  25. Mian F. A., Jarman T. R., Righelato R. C. 1978; Biosynthesis of exopolysaccharide by Pseudomonas aeruginosa. J Bacteriol134:418–422
    [Google Scholar]
  26. Miller J. H. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Nealson K. H., Hastings J. W. 1991; The luminous bacteria. In the Prokaryotes vol 1, 2nd edn. pp625–639 Edited by Balows A., Harder W., Schleifer K. H., Trüper H. G.. New York: Springer;
    [Google Scholar]
  28. Nouwens A. S., Wilcox M. D. P., Walsh B. J., Cordwell S. J. 2002; Proteomic comparison of membrane and extracellular proteins from invasive (PAO1) and cytotoxic (6203) strains ofPseudomonas aeruginosa. Proteomics2:1325–1346[CrossRef]
    [Google Scholar]
  29. Nouwens A. S., Beatson S. A., Whitchurch C. B., Walsh B. J., Schweizer H. P., Mattick J. S., Cordwell S. J. 2003; Proteome analysis of extracellular proteins regulated by the las and rhl quorum sensing systems in Pseudomonas aeruginosa PAO1. Microbiology149:1311–1322[CrossRef]
    [Google Scholar]
  30. Ochsner U. A., Wilderman P. J., Vasil A. I., Vasil M. L. 2002; GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis gene. Mol Microbiol45:1277–1287[CrossRef]
    [Google Scholar]
  31. Palma M., Worgall S., Quadri L. E. N. 2003; Transcriptome analysis of the Pseudomonas aeruginosa response to iron. Arch Microbiol180:374–379[CrossRef]
    [Google Scholar]
  32. Pessi G., Haas D. 2000; Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum sensing regulators LasR and RhlR inPseudomonas aeruginosa. J Bacteriol182:6940–6949[CrossRef]
    [Google Scholar]
  33. Ravel J., Cornelis P. 2003; Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol11:195–200[CrossRef]
    [Google Scholar]
  34. Sabra W., Zeng A.-P., Deckwer W.-D, Lünsdorf H.. 2000; Effect of oxygen on formation and structure of Azotobacter vinelandii alginate and its role in protecting nitrogenase. Appl Environ Microbiol66:4037–4044[CrossRef]
    [Google Scholar]
  35. Sabra W., Kim E.-J., Zeng A.-P. 2002; Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology148:3195–3202
    [Google Scholar]
  36. Sabra W., Lunsdorf H., Zeng A.-P. 2003; Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology149:2789–2795[CrossRef]
    [Google Scholar]
  37. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185:2066–2079[CrossRef]
    [Google Scholar]
  38. Schuster M., Hawkins A. C., Harwood C. S., Greenberg E. P. 2004; The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol51:973–985[CrossRef]
    [Google Scholar]
  39. Shand G. H., Pedersen S. S., Brown M. R., Hoiby N. 1991; Serum antibodies to Pseudomonas aeruginosa outer-membrane proteins and iron-regulated membrane proteins at different stages of chronic cystic fibrosis lung infection. J Med Microbiol34:203–212[CrossRef]
    [Google Scholar]
  40. Shigematsu T., Fukushima J., Oyama M., Tsuda M., Kawamoto S., Okuda K. 2001; Iron-mediated regulation of alkaline proteinase production in Pseudomonas aeruginosa. Microbiol Immunol45:579–590[CrossRef]
    [Google Scholar]
  41. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Weish M. J., Greenberg E. P. 2000; Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature407:762–764[CrossRef]
    [Google Scholar]
  42. Smith R. S., Iglewski B. H. 2003; Pseudomonas aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol6:56–60[CrossRef]
    [Google Scholar]
  43. Stewart P. S., Roe F., Rayner J., Elkins J. G., Lewandowski Z., Ochsner U. A., Hassett D. J. 2000; Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Appl Environ Micrbiol66:836–838[CrossRef]
    [Google Scholar]
  44. Valente E., Assis M. C., Alvim I. M. P., Pereira G. M. B., Plotkowski M. C. 2000; Pseudomonas aeruginosa induces apoptosis in human endothelial cells. Microb Pathog29:345–358[CrossRef]
    [Google Scholar]
  45. Vasil M. L., Ochsner U. A. 1999; The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol34:399–413[CrossRef]
    [Google Scholar]
  46. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol185:2080–2095[CrossRef]
    [Google Scholar]
  47. Wang W., Sun J., Hartlep M., Deckwer W. D., Zeng A.-P. 2003a; Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. Biotechnol Bioeng83:525–536[CrossRef]
    [Google Scholar]
  48. Wang W., Sun J., Nimtz M., Deckwer W. D., Zeng A.-P. 2003b; Protein identification from two-dimensional gel electrophoresis analysis of Klebsiella pneumoniae by combined use of mass spectrometry data and raw genome sequences. Proteome Sci1:6 doi: 10.1186/1477-5956-1-6[CrossRef]
    [Google Scholar]
  49. Whiteley M., Lee K. M., Greenberg E. P. 1999; Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A96:13904–13909[CrossRef]
    [Google Scholar]
  50. Wilderman P. J., Vasil A. I., Johnson Z., Wilson M. J., Cunliffe H. E., Lamont I. L., Vasil M. L. 2001; Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa. Infect Immun69:5385–5394[CrossRef]
    [Google Scholar]
  51. Withers H., Swift S., Williams P. 2001; Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr Opin Microbiol4:186–193[CrossRef]
    [Google Scholar]
  52. Wolfgang M. C., Jyot J., Goodman A. L., Ramphal R., Lory S. 2004; Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. Proc Natl Acad Sci U S A100:8484–8489
    [Google Scholar]
  53. Zeng A.-P. 1996; Quantitative assessment of effect of cell density on metabolism and monoclonal antibody production of hybridoma cells. J Biotechnol45:243–251[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27566-0
Loading
/content/journal/micro/10.1099/mic.0.27566-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error