1887

Abstract

and () are adjacent regions located in DNA. encodes glucose kinase (Glk), which has been implicated in carbon catabolite repression (CCR) in the genus . In this work, the and genes from were used, either individually or together, to transform three mutants of var. resistant to CCR. These mutants present decreased levels of Glk, and deficiency in glucose transport. When the mutants were transformed with a plasmid containing the sequence, glucose uptake and Glk activity values were increased to levels similar to or higher than those of the original strain, and each strain regained sensitivity to CCR. This result was surprising considering that the putative amino acid sequence does not seem to encode a glucose permease or a Glk. In agreement with these results, an increase in mRNA levels was observed in a CCR-resistant mutant transformed with compared with those of the original strain and the CCR-resistant mutant itself. As expected, recombinants containing the sequence reverted Glk to normal activity values, but glucose uptake remained deficient. The data suggest that the gene product enhances transcription of both genes, and support the first specific role for this region in species. The physiological consequence of this effect is an increase in the glucose catabolites that may be involved in eliciting CCR in this genus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27557-0
2005-05-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511717.html?itemId=/content/journal/micro/10.1099/mic.0.27557-0&mimeType=html&fmt=ahah

References

  1. Angell, S., Schwartz, E. & Bibb, J. M. ( 1992; ). The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol 6, 2833–2844.[CrossRef]
    [Google Scholar]
  2. Angell, S., Lewis, C. G., Buttner, M. J. & Bibb, J. M. ( 1994; ). Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet 244, 135–143.
    [Google Scholar]
  3. Arcamone, F., Cassinelli, G., Fantini, G., Grein, A., Orezzi, P., Pol, C. & Spalla, C. ( 1969; ). Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from Streptomyces peucetius var. caesius. Biotechnol Bioeng 11, 1101–1110.[CrossRef]
    [Google Scholar]
  4. Baltz, R. H. & Matsushima, P. ( 1981; ). Protoplast fusion in Streptomyces: conditions for efficient genetic recombination and cell regeneration. J Gen Microbiol 127, 137–146.
    [Google Scholar]
  5. Bertram, R., Schlicht, M., Mahr, K., Nothaft, H., Saier, M. H., Jr & Titgemeyer, F. ( 2004; ). In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2). J Bacteriol 186, 1362–1373.[CrossRef]
    [Google Scholar]
  6. Brückner, R. & Titgemeyer, F. ( 2002; ). Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209, 141–148.[CrossRef]
    [Google Scholar]
  7. Champness, W. ( 1988; ). New loci required for Streptomyces coelicolor morphological and physiological differentiation. J Bacteriol 170, 1168–1174.
    [Google Scholar]
  8. Chomczynski, P. & Sacchi, N. ( 1987; ). Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162, 156–159.
    [Google Scholar]
  9. Demain, A. L. ( 1989; ). Carbon source regulation of idiolite biosynthesis in actinomycetes. In Regulation of Secondary Metabolism in Actinomycetes, pp. 127–131. Edited by S. Shapiro. Boca Raton, FL: CRC Press.
  10. Escalante, L., Ramos, I., Imriskova, I., Langley, E. & Sánchez, S. ( 1999; ). Glucose repression of anthracycline formation in Streptomyces peucetius var. caesius. Appl Microbiol Biotechnol 52, 572–578.[CrossRef]
    [Google Scholar]
  11. Flores, M. E., Ponce, E., Rubio, M. & Huitron, C. ( 1993; ). Glucose and glycerol repression of amylase in Streptomyces kanamyceticus and isolation of deregulated mutants. Biotechnol Lett 15, 595–600.[CrossRef]
    [Google Scholar]
  12. Hodgson, D. A. ( 1982; ). Glucose repression of carbon uptake and metabolism in Streptomyces coelicolor A3(2) and its perturbation in mutants resistant to 2-deoxyglucose. J Gen Microbiol 128, 2417–2430.
    [Google Scholar]
  13. Ikeda, H., Seno, E. T., Bruton, C. J. & Chater, K. F. ( 1984; ). Genetic mapping, cloning and physiological aspects of the glucose kinase gene of Streptomyces coelicolor. Mol Gen Genet 196, 501–507.[CrossRef]
    [Google Scholar]
  14. Imriskova, I., Langley, E., Arreguín-Espinoza, R., Aguilar, G., Pardo, J. P. & Sánchez, S. ( 2001; ). Purification and characterization of glucose kinase from Streptomyces peucetius var. caesius. Arch Biochem Biophys 394, 137–144.[CrossRef]
    [Google Scholar]
  15. Ingram, C. & Westpheling, J. ( 1995; ). The glucose kinase gene of Streptomyces coelicolor is not required for glucose repression of the chi63 promoter. J Bacteriol 177, 3587–3588.
    [Google Scholar]
  16. Ingram, C., Delic, I. & Westpheling, J. ( 1995; ). ccrA1: mutation in Streptomyces coelicolor that affects the control of catabolite repression. J Bacteriol 177, 3579–3586.
    [Google Scholar]
  17. Jault, J.-M., Fieulaine, S., Nessler, S., Gonzalo, P., Di Pietro, A., Deutscher, J. & Galinier, A. ( 2000; ). The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J Biol Chem 275, 1773–1780.[CrossRef]
    [Google Scholar]
  18. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich: John Innes Foundation.
  19. Lydiate, D. J., Malpartida, F. & Hopwood, D. A. ( 1985; ). The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene 35, 223–235.[CrossRef]
    [Google Scholar]
  20. Nothaft, H., Parche, S., Kamionka, A. & Titgemeyer, F. ( 2003; ). In vivo analysis of HPr reveals a fructose-specific phosphotransferase system that confers high-affinity uptake in Streptomyces coelicolor. J Bacteriol 185, 929–937.[CrossRef]
    [Google Scholar]
  21. Ramos, I., Guzmán, S., Escalante, L., Imriskova, I., Rodríguez-Sanoja, R., Sánchez, S. & Langley, E. ( 2004; ). The glucose kinase alone cannot be responsible for carbon source regulation in Streptomyces peucetius var. caesius. Res Microbiol 155, 267–274.[CrossRef]
    [Google Scholar]
  22. Saier, M. H., Jr, Chauvaux, S., Deutcher, J., Reizer, J. & Ye, J. J. ( 1995; ). Protein phosphorylation and regulation of carbon metabolism in Gram-negative versus Gram-positive bacteria. Trends Biochem Sci 20, 267–271.[CrossRef]
    [Google Scholar]
  23. Segura, D., González, R., Rodríguez, R., Sandoval, T., Escalante, L. & Sánchez, S. ( 1996; ). Streptomyces mutants insensitive to glucose repression showed deregulation of primary and secondary metabolism. Asia Pac J Mol Biol Biotechnol 4, 30–36.
    [Google Scholar]
  24. Segura, D., Santana, C., Gosh, R., Escalante, L. & Sánchez, S. ( 1997; ). Anthracyclines: isolation of overproducing strains by selection and genetic recombination of putative regulatory mutants of Streptomyces peucetius var. caesius. Appl Microbiol Biotechnol 48, 615–620.[CrossRef]
    [Google Scholar]
  25. Stülke, J. & Hillen, W. ( 1999; ). Carbon catabolite repression in bacteria. Curr Opin Microbiol 2, 195–201.[CrossRef]
    [Google Scholar]
  26. Titgemeyer, F., Walkenhorst, J., Reizer, J., Stuiver, M. H., Cui, X. & Saier, M. H., Jr ( 1995; ). Identification and characterization of phosphoenol-pyruvate : fructose phosphotransferase systems in three Streptomyces species. Microbiology 141, 51–58.[CrossRef]
    [Google Scholar]
  27. Wang, F., Xiao, X., Saito, A. & Schremp, H. ( 2002; ). Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine. Mol Genet Genomics 268, 344–351.[CrossRef]
    [Google Scholar]
  28. Ward, J. M., Janssen, J. R., Kieser, T. & Bibb, M. J. ( 1986; ). Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203, 468–478.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27557-0
Loading
/content/journal/micro/10.1099/mic.0.27557-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error