1887
Preview this article:
Zoom in
Zoomout

Singular structures and operon organizations of essential two-component systems in species of , Page 1 of 1

| /docserver/preview/fulltext/micro/150/10/3096-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27550-0
2004-10-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503096.html?itemId=/content/journal/micro/10.1099/mic.0.27550-0&mimeType=html&fmt=ahah

References

  1. Aravind, L. & Ponting, C. P. ( 1999; ). The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176, 111–116.[CrossRef]
    [Google Scholar]
  2. Claverys, J. P. & Havarstein, L. S. ( 2002; ). Extracellular-peptide control of competence for genetic transformation in Streptococcus pneumoniae. Front Biosci 7, d1798–d1814.[CrossRef]
    [Google Scholar]
  3. Daiyasu, H., Osaka, K., Ishino, Y. & Toh, H. ( 2001; ). Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett 503, 1–6.[CrossRef]
    [Google Scholar]
  4. Dubrac, S. & Msadek, T. ( 2004; ). Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus. J Bacteriol 186, 1175–1181.[CrossRef]
    [Google Scholar]
  5. Echenique, J. R. & Trombe, M. C. ( 2001; ). Competence repression under oxygen limitation through the two-component MicAB signal-transducing system in Streptococcus pneumoniae and involvement of the PAS domain of MicB. J Bacteriol 183, 4599–4608.[CrossRef]
    [Google Scholar]
  6. Elsen, S., Duche, O. & Colbeau, A. ( 2003; ). Interaction between the H2 sensor HupUV and the histidine kinase HupT controls HupSL hydrogenase synthesis in Rhodobacter capsulatus. J Bacteriol 185, 7111–7119.[CrossRef]
    [Google Scholar]
  7. Fabret, C. & Hoch, J. A. ( 1998; ). A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 180, 6375–6383.
    [Google Scholar]
  8. Fraser, C. M., Gocayne, J. D., White, O. & 26 other authors ( 1995; ). The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403.[CrossRef]
    [Google Scholar]
  9. Fukuchi, K., Kasahara, Y., Asai, K., Kobayashi, K., Moriya, S. & Ogasawara, N. ( 2000; ). The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology 146, 1573–1583.
    [Google Scholar]
  10. Himmelreich, R., Hilbert, H., Plagens, H., Pirkl, E., Li, B. C. & Herrmann, R. ( 1996; ). Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 24, 4420–4449.[CrossRef]
    [Google Scholar]
  11. Hoch, J. A. ( 2000; ). Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3, 165–170.[CrossRef]
    [Google Scholar]
  12. Hoffmann, T., Troup, B., Szabo, A., Hungerer, C. & Jahn, D. ( 1995; ). The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol Lett 131, 219–225.[CrossRef]
    [Google Scholar]
  13. Howell, A., Dubrac, S., Andersen, K. K., Noone, D., Fert, J., Msadek, T. & Devine, K. ( 2003; ). Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Mol Microbiol 49, 1639–1655.[CrossRef]
    [Google Scholar]
  14. Inouye, M. & Dutta, R. ( 2003; ). Histidine Kinases in Signal Transduction. San Diego, CA: Academic Press.
  15. Kobayashi, K., Ogura, M., Yamaguchi, H., Yoshida, K., Ogasawara, N., Tanaka, T. & Fujita, Y. ( 2001; ). Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. J Bacteriol 183, 7365–7370.[CrossRef]
    [Google Scholar]
  16. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. ( 2001; ). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567–580.[CrossRef]
    [Google Scholar]
  17. Lange, R., Wagner, C., de Saizieu, A. & 7 other authors ( 1999; ). Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene 237, 223–234.[CrossRef]
    [Google Scholar]
  18. Martin, P. K., Li, T., Sun, D., Biek, D. P. & Schmid, M. B. ( 1999; ). Role in cell permeability of an essential two-component system in Staphylococcus aureus. J Bacteriol 181, 3666–3673.
    [Google Scholar]
  19. Nakano, M. M. & Zuber, P. ( 1998; ). Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu Rev Microbiol 52, 165–190.[CrossRef]
    [Google Scholar]
  20. Ng, W. L., Robertson, G. T., Kazmierczak, K. M., Zhao, J., Gilmour, R. & Winkler, M. E. ( 2003; ). Constitutive expression of PcsB suppresses the requirement for the essential VicR (YycF) response regulator in Streptococcus pneumoniae R6. Mol Microbiol 50, 1647–1663.[CrossRef]
    [Google Scholar]
  21. Ng, W. L., Kazmierczak, K. M. & Winkler, M. E. ( 2004; ). Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Mol Microbiol 53, 1161–1175.[CrossRef]
    [Google Scholar]
  22. Oshima, T., Aiba, H., Masuda, Y., Kanaya, S., Sugiura, M., Wanner, B. L., Mori, H. & Mizuno, T. ( 2002; ). Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46, 281–291.[CrossRef]
    [Google Scholar]
  23. Quon, K. C., Marczynski, G. T. & Shapiro, L. ( 1996; ). Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84, 83–93.[CrossRef]
    [Google Scholar]
  24. Stock, A. M., Robinson, V. L. & Goudreau, P. N. ( 2000; ). Two-component signal transduction. Annu Rev Biochem 69, 183–215.[CrossRef]
    [Google Scholar]
  25. Taylor, B. L. & Zhulin, I. B. ( 1999; ). PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63, 479–506.
    [Google Scholar]
  26. von Wachenfeldt, C. & Hederstedt, L. ( 2002; ). Respiratory cytochromes, other heme proteins, and heme biosynthesis. In Bacillus subtilis and Its Closest Relatives: From Gene to Cells, pp. 163–179. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  27. Wagner, C., Saizieu Ad, A., Schonfeld, H. J., Kamber, M., Lange, R., Thompson, C. J. & Page, M. G. ( 2002; ). Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon. Infect Immun 70, 6121–6128.[CrossRef]
    [Google Scholar]
  28. Wang, L., Fabret, C., Kanamaru, K., Stephenson, K., Dartois, V., Perego, M. & Hoch, J. A. ( 2001; ). Dissection of the functional and structural domains of phosphorelay histidine kinase A of Bacillus subtilis. J Bacteriol 183, 2795–2802.[CrossRef]
    [Google Scholar]
  29. Wolanin, P. M. & Stock, J. B. ( 2003; ). Transmembrane signaling and the regulation of histidine kinase activity. In Histidine Kinases in Signal Transduction, pp. 74–123. Edited by M. Inouye & R. Dutta. Academic Press.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27550-0
Loading
/content/journal/micro/10.1099/mic.0.27550-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error