1887

Abstract

There is growing evidence that biofilms exhibit a multicellular developmental life cycle analogous to that of the myxobacteria. In non-mucoid PAO1 biofilms cultured in glass flow cells the phenotypic differentiation of microcolonies into a motile phenotype in the interior of the microcolony and a non-motile surrounding ‘wall phenotype’ are described. After differentiation the interior cells coordinately evacuated the microcolony from local break out points and spread over the wall of the flow cell, suggesting that the specialized microcolonies were analogous to crude fruiting bodies. A microcolony diameter of approximately 80 μm was required for differentiation, suggesting that regulation was related to cell density and mass transfer conditions. This phenomenon was termed ‘seeding dispersal’ to differentiate it from ‘erosion’ which is the passive removal of single cells by fluid shear. Using the flow cell culturing method, in which reproducible seeding phenotype in PAO1 wild-type was demonstrated, the effects of quorum sensing (QS) and rhamnolipid production (factors previously identified as important in determining biofilm structure) on seeding dispersal using knockout mutants isogenic with PAO1 was investigated. Rhamnolipid () was not required for seeding dispersal but / QS (PAO1-JP2) was, in our system. To assess the clinical relevance of these data, mucoid cystic fibrosis isolate FRD1 was also investigated and was seeding-dispersal-negative.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27536-0
2005-05-01
2019-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511569.html?itemId=/content/journal/micro/10.1099/mic.0.27536-0&mimeType=html&fmt=ahah

References

  1. Aendekerk, S., Ghysels, B., Cornelis, P. & Baysse, C. ( 2002; ). Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148, 2371–2381.
    [Google Scholar]
  2. Bryers, J. D. ( 1988; ). Modeling biofilm accumulation. In Physiological Models in Microbiology, vol. 2, pp. 109–144. Edited by M. J. Bazin & J. I. Prosser. Boca Raton, FL: CRC Press.
  3. Characklis, W. G. ( 1990; ). Biofilm processes. In Biofilms, pp. 195–231. Edited by W. G. Characklis & K. C. Marshall. New York: Wiley.
  4. Davey, M. E., Caiazza, N. C. & O'Toole, G. A. ( 2003; ). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185, 1027–1036.[CrossRef]
    [Google Scholar]
  5. Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. & Greenberg, E. P. ( 1998; ). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298.[CrossRef]
    [Google Scholar]
  6. Høiby, N., Krogh Johansen, H., Moser, C., Song, Z., Ciofu, O. & Kharazmi, A. ( 2001; ). Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3, 23–35.[CrossRef]
    [Google Scholar]
  7. Kaplan, J. B., Ragunath, C., Ramasubbu, N. & Fine, D. H. ( 2003a; ). Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β-hexosaminidase activity. J Bacteriol 185, 4693–4698.[CrossRef]
    [Google Scholar]
  8. Kaplan, J. B., Meyenhofer, M. F. & Fine, D. H. ( 2003b; ). Biofilm growth and detachment of Actinobacillus actinomycetemcomitans. J Bacteriol 185, 1399–1404.[CrossRef]
    [Google Scholar]
  9. Klausen, M., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. ( 2003; ). Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50, 61–68.[CrossRef]
    [Google Scholar]
  10. Kohler, T., Curty, L. K., Barja, F., van Delden, C. & Pechere, J. C. ( 2000; ). Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182, 5990–5996.[CrossRef]
    [Google Scholar]
  11. Nivens, D. E., Ohman, D. E., Williams, J. & Franklin, M. J. ( 2001; ). Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183, 1047–1057.[CrossRef]
    [Google Scholar]
  12. Ochsner, U. A., Fiechter, A. & Reiser, J. ( 1994; ). Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269, 19787–19795.
    [Google Scholar]
  13. Ohman, D. E. & Chakrabarty, A. M. ( 1981; ). Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect Immun 33, 142–148.
    [Google Scholar]
  14. Pearson, J. P., Pesci, E. C. & Iglewski, B. H. ( 1997; ). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179, 5756–5767.
    [Google Scholar]
  15. Picioreanu, C., van Loosdrecht, M. C. & Heijnen, J. J. ( 2001; ). Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72, 205–218.[CrossRef]
    [Google Scholar]
  16. Purevdorj, B., Costerton, J. W. & Stoodley, P. ( 2002; ). Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68, 4457–4464.[CrossRef]
    [Google Scholar]
  17. Purevdorj-Gage, B. & Stoodley, P. ( 2004; ). Hydrodynamic considerations of biofilm structure and behavior. In Microbial Biofilms, pp. 160–173. Edited by M. A. Ghannoum & G. O'Toole. Washington, DC: American Society for Microbiology.
  18. Rashid, M. H. & Kornberg, A. ( 2000; ). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97, 4885–4890.[CrossRef]
    [Google Scholar]
  19. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. ( 2002; ). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184, 1140–1154.[CrossRef]
    [Google Scholar]
  20. Semmler, A. B., Whitchurch, C. B. & Mattick, J. S. ( 1999; ). A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology 145, 2863–2873.
    [Google Scholar]
  21. Stewart, P. S. ( 1993; ). A model of biofilm detachment. Biotechnol Bioeng 41, 111–117.[CrossRef]
    [Google Scholar]
  22. Stewart, P. S., McFeters, G. A. & Huang, C. T. ( 2000; ). Biofilm formation and persistence. In Biofilms II: Process Analysis and Application, pp. 373–405. Edited by J. D. Bryers. New York: Wiley-Liss.
  23. Stoodley, P., Lewandowski, Z., Boyle, J. D. & Lappin-Scott, H. M. ( 1999; ). Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid-shear: an in situ investigation of biofilm rheology. Biotechnol Bioeng 65, 83–93.[CrossRef]
    [Google Scholar]
  24. Stoodley, P., Wilson, S., Hall-Stoodley, L., Boyle, J. D., Lappin-Scott, H. M. & Costerton, J. W. ( 2001; ). Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol 67, 5608–5613.[CrossRef]
    [Google Scholar]
  25. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. ( 2002; ). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187–209.[CrossRef]
    [Google Scholar]
  26. Tolker-Nielsen, T., Brinch, U. C., Ragas, P. C., Andersen, J. B., Jacobsen, C. S. & Molin, S. ( 2000; ). Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182, 6482–6489.[CrossRef]
    [Google Scholar]
  27. Towler, B. W., Rupp, C. J., Cunningham, A. B. & Stoodley, P. ( 2003; ). Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis. Biofouling 19, 279–285.[CrossRef]
    [Google Scholar]
  28. Van Loosdrecht, M. C. M., Eikelboom, D., Gjaltema, A., Mulder, A., Tijhuis, L. & Heijnen, J. J. ( 1995; ). Biofilm structures. Water Sci Technol 32, 35–43.
    [Google Scholar]
  29. Van Loosdrecht, M. C. M., Picioreanu, C. & Heijnen, J. J. ( 1997; ). A more unifying hypothesis for the structure of microbial biofilms. FEMS Microb Ecol 24, 181–183.[CrossRef]
    [Google Scholar]
  30. Webb, J. S., Thompson, L. S., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., Givskov, M. & Kjelleberg, S. ( 2003; ). Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185, 4585–4592.[CrossRef]
    [Google Scholar]
  31. Wilson, S., Hamilton, M. A., Hamilton, G. C., Schumann, M. R. & Stoodley, P. ( 2004; ). Statistical quantification of the detachment rates and size distribution of cell clumps from wild type (PAO1) and cell signaling mutant (JP1) Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70, 5847–5852.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27536-0
Loading
/content/journal/micro/10.1099/mic.0.27536-0
Loading

Data & Media loading...

A movie documenting differentiation of clusters in a PA01 biofilm into two distinct cell phenotypes; highly motile cells in the interior of the clusters and cells which remained stationary making an outer cluster wall is available as an AVI file (1.6 Mb). Movie 1

A second AVI movie (3.3 Mb) shows cells evacuating a PA01 microcolony. Movie 2

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error