
Full text loading...
The food spoilage yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae have been proposed to resist weak-acid preservative stress by different means; Z. bailii by limiting influx of preservative combined with its catabolism, S. cerevisiae by active extrusion of the preservative weak-acid anion and H+. Measurement of H+ extrusion by exponential-phase Z. bailii cells suggest that, in common with S. cerevisiae, this yeast uses a plasma membrane H+-ATPase to expel H+ when challenged by weak-acid preservative (benzoic acid). Simultaneous measurement of Z. bailii net H+ and K+ fluxes showed that net K+ influx accompanies net H+ efflux during acute benzoic acid stress. Such ionic coupling is known for S. cerevisiae in short-term preservative stress. Both yeasts significantly accumulated K+ on long-term exposure to benzoic acid. Analysis of S. cerevisiae K+ transporter mutants revealed that loss of the high affinity K+ uptake system Trk1 confers sensitivity to growth in preservative. The results suggest that cation accumulation is an important factor in adaptation to weak-acid preservatives by spoilage yeasts and that Z. bailii and S. cerevisiae share hitherto unsuspected adaptive responses at the level of plasma membrane ion transport.
Article metrics loading...
Full text loading...
References
Data & Media loading...