1887

Abstract

The gene encoding a putative high-potential iron–sulfur protein (HiPIP) from the strictly acidophilic and chemolithoautotrophic ATCC 33020 has been cloned and sequenced. This potential HiPIP was overproduced in the periplasm of the neutrophile and heterotroph . As shown by optical and EPR spectra and by electrochemical studies, the recombinant protein has all the biochemical properties of a HiPIP, indicating that the iron–sulfur cluster was correctly inserted. Translocation of this protein in the periplasm of was not detected in a Δ mutant, indicating that it is dependent on the Tat system. The genetic organization of the locus in strains ATCC 23270 and ATCC 33020 is different from that found in strains Fe-1 and BRGM. Indeed, in ATCC 33020 and ATCC 23270 (the type strain), was not located downstream from but was instead downstream from , encoding cytochrome from the second cytochrome complex. These findings underline the genotypic heterogeneity within the species. The results suggest that Iro transfers electrons from a cytochrome complex to a terminal oxidase, as proposed for the HiPIP in photosynthetic bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27476-0
2005-05-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511421.html?itemId=/content/journal/micro/10.1099/mic.0.27476-0&mimeType=html&fmt=ahah

References

  1. Agarwal, A., Tan, J., Eren, M., Tevelev, A., Lui, S. M. & Cowan, J. A. ( 1993; ). Synthesis, cloning and expression of a synthetic gene for high potential iron protein from Chromatium vinosum. Biochem Biophys Res Commun 197, 1357–1362.[CrossRef]
    [Google Scholar]
  2. Ambler, R. P., Meyer, T. E. & Kamen, M. D. ( 1993; ). Amino acid sequence of a high redox potential ferredoxin (HiPIP) from the purple phototrophic bacterium Rhodopila globiformis, which has the highest known redox potential of its class. Arch Biochem Biophys 306, 215–222.[CrossRef]
    [Google Scholar]
  3. Appia-Ayme, C. ( 1998; ). Caractérisation d'un opéron codant pour 7 protéines transporteurs d'électrons chez Thiobacillus ferrooxidans. PhD thesis, Université de la Méditerranée, Aix-Marseille II, France (in French).
  4. Appia-Ayme, C., Bengrine, A., Cavazza, C., Giudici-Orticoni, M.-T., Bruschi, M., Chippaux, M. & Bonnefoy, V. ( 1998; ). Characterization and expression of the co-transcribed cyc1 and cyc2 genes encoding the cytochrome c 4 (c552) and a high-molecular-mass cytochrome c from Thiobacillus ferrooxidans ATCC 33020. FEMS Microbiol Lett 167, 171–177.
    [Google Scholar]
  5. Appia-Ayme, C., Guiliani, N., Ratouchniak, J. & Bonnefoy, V. ( 1999; ). Characterization of an operon encoding two c-type cytochromes, an aa 3-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl Environ Microbiol 65, 4781–4787.
    [Google Scholar]
  6. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1992; ). Current Protocols in Molecular Biology. New York: Greene Publishing.
  7. Bartsch, R. G. ( 1978; ). Purification of (4Fe-4S)1–2–ferredoxins (high-potential iron–sulfur proteins) from bacteria. Methods Enzymol 53, 329–340.
    [Google Scholar]
  8. Bates, R. G. ( 1964; ). Determination of pH. New York: Wiley.
  9. Battaglia-Brunet, F., Clarens, M., d'Hugues, P., Godon, J.-J., Foucher, S. & Morin, D. ( 2002; ). Monitoring of a pyrite-oxidising bacterial population using DNA single-strand conformation polymorphism and microscopic techniques. Appl Microbiol Biotechnol 60, 206–211.[CrossRef]
    [Google Scholar]
  10. Bengrine, A., Guiliani, N., Appia-Ayme, C., Jedlicki, E., Holmes, D. S., Chippaux, M. & Bonnefoy, V. ( 1998; ). Sequence and expression of the rusticyanin structural gene from Thiobacillus ferrooxidans ATCC 33020 strain. Biochim Biophys Acta 1443, 99–112.[CrossRef]
    [Google Scholar]
  11. Berks, B. C. ( 1996; ). A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22, 393–404.[CrossRef]
    [Google Scholar]
  12. Blake, R. C., II & Shute, E. A. ( 1994; ). Respiratory enzymes of Thiobacillus ferrooxidans. Kinetic properties of an acid-stable iron : rusticyanin oxidoreductase. Biochemistry 33, 9220–9228.[CrossRef]
    [Google Scholar]
  13. Blattner, F. R., Plunkett, G., III, Bloch, C. A. & 14 other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.[CrossRef]
    [Google Scholar]
  14. Bonora, P., Principi, I., Monti, B., Ciurli, S., Zannoni, D. & Hochkoeppler, A. ( 1999; ). On the role of high-potential iron-sulfur proteins and cytochromes in the respiratory chain of two facultative phototrophs. Biochim Biophys Acta 1410, 51–60.[CrossRef]
    [Google Scholar]
  15. Brasseur, G., Bruscella, P., Bonnefoy, V. & Lemesle-Meunier, D. ( 2002; ). The bc 1 complex of the iron-grown acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction. Is there a second bc 1 complex? Biochim Biophys Acta 1555, 37–43.[CrossRef]
    [Google Scholar]
  16. Brüser, T., Deutzmann, R. & Dahl, C. ( 1998; ). Evidence against the double-arginine motif as the only determinant for protein translocation by a novel Sec-independent pathway in Escherichia coli. FEMS Microbiol Lett 164, 329–336.[CrossRef]
    [Google Scholar]
  17. Brüser, T., Yano, T., Brune, D. C. & Daldal, F. ( 2003; ). Membrane targeting of a folded and cofactor-containing protein. Eur J Biochem 270, 1211–1221.[CrossRef]
    [Google Scholar]
  18. Capozzi, F., Ciurli, S. & Luchinat, C. ( 1998; ). Coordination sphere versus protein environment as determinants of electronic and functional properties of iron-sulfur proteins. Struct Bonding 90, 127–160.
    [Google Scholar]
  19. Carter, C. W., Jr, Kraut, J., Freer, S. T., Nguyen-Huu-Xuong, Alden, R. A. & Bartsch, R. G. ( 1974; ). Two-Angstrom crystal structure of oxidized Chromatium high potential iron protein. J Biol Chem 249, 4212–4225.
    [Google Scholar]
  20. Casimiro, D. R., Toy-Palmer, A., Blake, R. C., II & Dyson, H. J. ( 1995; ). Gene synthesis, high level expression, and mutagenesis of Thiobacillus ferrooxidans rusticyanin: His85 is a ligand to the blue copper center. Biochemistry 34, 6640–6648.[CrossRef]
    [Google Scholar]
  21. Caspersen, M. B., Bennett, K. & Christensen, H. E. M. ( 2000; ). Expression and characterization of recombinant Rhodocyclus tenuis high potential iron-sulfur protein. Protein Expr Purif 19, 259–264.[CrossRef]
    [Google Scholar]
  22. Cavazza, C., Guigliarelli, B., Bertrand, P. & Bruschi, M. ( 1995; ). Biochemical and EPR characterization of a high potential iron-sulfur protein in Thiobacillus ferrooxidans. FEMS Microbiol Lett 130, 193–200.[CrossRef]
    [Google Scholar]
  23. Collinet, M.-N. & Morin, D. ( 1990; ). Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite, arsenate, ferrous and ferric iron. Antonie van Leeuwenhoek 57, 237–244.[CrossRef]
    [Google Scholar]
  24. Cristobal, S., de Gier, J.-W., Nielsen, H. & von Heijne, G. ( 1999; ). Competition between Sec- and Tat-dependent protein translocation in Escherichia coli. EMBO J 18, 2982–2990.[CrossRef]
    [Google Scholar]
  25. Duquesne, K., Lebrun, S., Casiot, C., Bruneel, O., Personné, J.-C., Leblanc, M., Elbaz-Poulichet, F., Morin, G. & Bonnefoy, V. ( 2003; ). Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Appl Environ Microbiol 69, 6165–6173.[CrossRef]
    [Google Scholar]
  26. Elbehti, A., Nitschke, W., Tron, P., Michel, C. & Lemesle-Meunier, D. ( 1999; ). Redox components of cytochrome bc-type enzymes in acidophilic prokaryotes. I. Characterization of the cytochrome bc 1-type complex of the acidophilic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. J Biol Chem 274, 16760–16765.[CrossRef]
    [Google Scholar]
  27. Eltis, L. D., Iwagami, S. G. & Smith, M. ( 1994; ). Hyperexpression of a synthetic gene encoding a high potential iron sulfur protein. Protein Eng 7, 1145–1150.[CrossRef]
    [Google Scholar]
  28. Fukumori, Y., Yano, T., Sato, A. & Yamanaka, T. ( 1988; ). Fe(II)-oxidizing enzyme purified from Thiobacillus ferrooxidans. FEMS Microbiol Lett 50, 169–172.[CrossRef]
    [Google Scholar]
  29. Furste, J. P., Pansegrau, W., Frank, R., Blocker, H., Scholz, P., Bagdasarian, M. & Lanka, E. ( 1986; ). Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48, 119–131.[CrossRef]
    [Google Scholar]
  30. Giudici-Orticoni, M.-T., Nitschke, W., Cavazza, C. & Bruschi, M. ( 1997; ). Characterization and functional role of a cytochrome c 4 involved in the iron respiratory electron transport chain of Thiobacillus ferrooxidans. In Proceedings of the International Biohydrometallurgy Symposium IBS 97/Biomine 97, PB4 1–PB4 10. Glenside, Australia: Australian Mineral Foundation.
  31. Giudici-Orticoni, M.-T., Leroy, G., Nitschke, W. & Bruschi, M. ( 2000; ). Characterization of a new dihemic c 4-type cytochrome isolated from Thiobacillus ferrooxidans. Biochemistry 39, 7205–7211.[CrossRef]
    [Google Scholar]
  32. Goebel, B. M. & Stackebrandt, E. ( 1994; ). Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60, 1614–1621.
    [Google Scholar]
  33. Guiliani, N., Bengrine, A., Borne, F., Chippaux, M. & Bonnefoy, V. ( 1995; ). Genetics of Thiobacillus ferrooxidans: advancement and projects: sequence and analysis of rus gene encoding rusticyanin and alaS gene encoding alanyl-tRNA synthetase. In Minerals Bioprocessing II, pp. 95–110. Edited by D. S. Holmes & R. S. Smith. Warrendale, PA: The Mineral, Metals and Material Society (TMS).
  34. Haladjian, J., Bruschi, M. Nunzi F. & Bianco, P. ( 1993; ). Electron-transfer reaction of rusticyanin, a “blue”-copper protein from Thiobacillus ferrooxidans, at modified gold electrodes. J Electroanal Chem 352, 329–335.[CrossRef]
    [Google Scholar]
  35. Haladjian, J., Bianco, P., Nunzi, F. & Bruschi, M. ( 1994; ). A permselective-membrane electrode for the electrochemical study of redox proteins. Application to cytochrome c 552 from Thiobacillus ferrooxidans. Anal Chim Acta 289, 15–20.[CrossRef]
    [Google Scholar]
  36. Harrison, A. P., Jr ( 1982; ). Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans. Arch Microbiol 131, 68–76.[CrossRef]
    [Google Scholar]
  37. Harrison, A. P., Jr ( 1984; ). The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol 38, 265–292.[CrossRef]
    [Google Scholar]
  38. Heering, H. A., Bulsink, B. M., Hagen, W. R. & Meyer, T. E. ( 1995; ). Influence of charge and polarity on the redox potentials of high-potential iron-sulfur proteins: evidence for the existence of two groups. Biochemistry 34, 14675–14686.[CrossRef]
    [Google Scholar]
  39. Hochkoeppler, A., Kofod, P., Ferro, G. & Ciurli, S. ( 1995; ). Isolation, characterization, and functional role of the high-potential iron-sulfur protein (HiPIP) from Rhodoferax fermentans. Arch Biochem Biophys 322, 313–318.[CrossRef]
    [Google Scholar]
  40. Hochkoeppler, A., Zannoni, D., Ciurli, S., Meyer, T. E., Cusanovich, M. A. & Tollin, G. ( 1996; ). Kinetics of photo-induced electron transfer from high-potential iron-sulfur protein to the photosynthetic reaction center of the purple phototroph Rhodoferax fermentans. Proc Natl Acad Sci U S A 93, 6998–7002.[CrossRef]
    [Google Scholar]
  41. Ingledew, W. J. ( 1982; ). Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. Biochim Biophys Acta 683, 89–117.[CrossRef]
    [Google Scholar]
  42. Irazabal, N., Marín, I. & Amils, R. ( 1997; ). Genomic organization of the acidophilic chemolithoautotrophic bacterium Thiobacillus ferrooxidans ATCC 21834. J Bacteriol 179, 1946–1950.
    [Google Scholar]
  43. Kai, M., Yano, T., Tamegai, H., Fukumori, Y. & Yamanaka, T. ( 1992; ). Thiobacillus ferrooxidans cytochrome c oxidase: purification, and molecular and enzymatic features. J Biochem 112, 816–821.
    [Google Scholar]
  44. Karavaiko, G. I., Turova, T. P., Kondrat'eva, T. F., Lysenko, A. M., Kolganova, T. V., Ageeva, S. N., Muntyan, L. N. & Pivovarova, T. A. ( 2003; ). Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans. Int J Syst Evol Microbiol 53, 113–119.[CrossRef]
    [Google Scholar]
  45. Kelly, D. P. & Wood, A. P. ( 2000; ). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50, 511–516.[CrossRef]
    [Google Scholar]
  46. Kusano, T., Takeshima, T., Sugarawa, K., Inoue, C., Shiratori, T., Yano, T., Fukumori, Y. & Yamanaka, T. ( 1992; ). Molecular cloning of the gene encoding Thiobacillus ferrooxidans Fe(II) oxidase. High homology of the gene product with HiPIP. J Biol Chem 267, 11242–11247.
    [Google Scholar]
  47. Leduc, L. G. & Ferroni, G. D. ( 1994; ). The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Lett 14, 103–120.[CrossRef]
    [Google Scholar]
  48. Liu, Z., Guiliani, N., Appia-Ayme, C., Borne, F., Ratouchniak, J. & Bonnefoy, V. ( 2000; ). Construction and characterization of a recA mutant of Thiobacillus ferrooxidans by marker exchange mutagenesis. J Bacteriol 182, 2269–2276.[CrossRef]
    [Google Scholar]
  49. Lovenberg, W., Buchanan, B. B. & Rabinowitz, J. C. ( 1963; ). Studies on the chemical nature of clostridial ferredoxin. J Biol Chem 238, 3899–3913.
    [Google Scholar]
  50. Menin, L., Schoepp, B., Parot, P. & Verméglio, A. ( 1997; ). Photoinduced cyclic electron transfer in Rhodocyclus tenuis cells: participation of HiPIP or cyt c 8 depending on the ambient redox potential. Biochemistry 36, 12183–12188.[CrossRef]
    [Google Scholar]
  51. Nagashima, K. V., Matsuura, K., Shimada, K. & Verméglio, A. ( 2002; ). High-potential iron-sulfur protein (HiPIP) is the major electron donor to the reaction center complex in photosynthetically growing cells of the purple bacterium Rubrivivax gelatinosus. Biochemistry 41, 14028–14032.[CrossRef]
    [Google Scholar]
  52. Novo, M. T. M., de Souza, A. P., Garcia, O. & Ottoboni, L. M. M. ( 1996; ). RAPD genomic fingerprinting differentiates Thiobacillus ferrooxidans strains. Syst Appl Microbiol 19, 91–95.[CrossRef]
    [Google Scholar]
  53. Ochman, H., Medhora, M. M., Garza, D. & Hartl, D. L. ( 1990; ). Amplification of flanking sequences by inverse PCR. In PCR Protocols, a Guide to Methods and Applications, pp. 219–227. Edited by M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White. San Diego: Academic Press.
  54. Palmer, T. & Berks, B. C. ( 2003; ). Moving folded proteins across the bacterial cell membrane. Microbiology 149, 547–556.[CrossRef]
    [Google Scholar]
  55. Pereira, M. M., Carita, J. N. & Teixeira, M. ( 1999; ). Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: characterization of the iron-sulfur centers from the dehydrogenases and investigation of the high-potential iron-sulfur protein function by in vitro reconstitution of the respiratory chain. Biochemistry 38, 1276–1283.[CrossRef]
    [Google Scholar]
  56. Schoepp, B., Parot, P., Menin, L., Gaillard, J., Richaud, P. & Verméglio, A. ( 1995; ). In vivo participation of a high potential iron-sulfur protein as electron donor to the photochemical reaction center of Rubrivivax gelatinosus. Biochemistry 34, 11736–11742.[CrossRef]
    [Google Scholar]
  57. Selenska-Pobell, S., Otto, A. & Kutschke, S. ( 1998; ). Identification and discrimination of thiobacilli using ARDREA, RAPD and rep-APD. J Appl Microbiol 84, 1085–1091.[CrossRef]
    [Google Scholar]
  58. Takahashi, Y. & Nakamura, M. ( 1999; ). Functional assignment of the ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 gene cluster involved in the assembly of Fe-S clusters in Escherichia coli. J Biochem 126, 917–926.[CrossRef]
    [Google Scholar]
  59. Takahashi, Y. & Tokumoto, U. ( 2002; ). A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem 277, 28380–28383.[CrossRef]
    [Google Scholar]
  60. Tedro, S. M., Meyer, T. E. & Kamen, M. D. ( 1979; ). Primary structure of a high potential, four-iron-sulfur ferredoxin from the photosynthetic bacterium Rhodospirillum tenue. J Biol Chem 254, 1495–1500.
    [Google Scholar]
  61. Tedro, S. M., Meyer, T. E. & Kamen, M. D. ( 1985; ). The amino acid sequence of a high-redox-potential ferredoxin from the purple phototrophic bacterium, Rhodospirillum tenue strain 2761. Arch Biochem Biophys 239, 94–101.[CrossRef]
    [Google Scholar]
  62. Valdés, J., Veloso, F., Jedlicki, E. & Holmes, D. ( 2003; ). Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics 4, 51. doi:10.1186/1471-2164-4-51[CrossRef]
    [Google Scholar]
  63. Van Driessche, G., Vandenberghe, I., Devreese, B. & 7 other authors ( 2003; ). Amino acid sequences and distribution of high-potential iron-sulfur proteins that donate electrons to the photosynthetic reaction center in phototropic proteobacteria. J Mol Evol 57, 181–199.[CrossRef]
    [Google Scholar]
  64. Verméglio, A., Li, J., Schoepp-Cothenet, B., Pratt, N. & Knaff, D. B. ( 2002; ). The role of high-potential iron protein and cytochrome c 8 as alternative electron donors to the reaction center of Chromatium vinosum. Biochemistry 41, 8868–8875.[CrossRef]
    [Google Scholar]
  65. Wu, L.-F., Ize, B., Chanal, A., Quentin, Y. & Fichant, G. ( 2000; ). Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism. J Mol Microbiol Biotechnol 2, 179–189.
    [Google Scholar]
  66. Yamanaka, T. & Fukumori, Y. ( 1995; ). Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiol Lett 17, 401–413.[CrossRef]
    [Google Scholar]
  67. Yarzábal, A., Brasseur, G., Ratouchniak, J., Lund, K., Lemesle-Meunier, D., DeMoss, J. A. & Bonnefoy, V. ( 2002; ). The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184, 313–317.[CrossRef]
    [Google Scholar]
  68. Yarzábal, A., Appia-Ayme, C., Ratouchniak, J. & Bonnefoy, V. ( 2004; ). Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150, 2113–2123.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27476-0
Loading
/content/journal/micro/10.1099/mic.0.27476-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1421 - 1431

Primers used in this study.

Alignment of the nucleotide sequences of the genes encoding the HiPIP Iro from strains Fe-1 ( ) and ATCC 23270 ( ).

DNA sequence of the locus of strain ATCC 33020.

[Single PDF file](65 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error