1887

Abstract

Intracellular iron homeostasis is a necessity for almost all living organisms, since both iron restriction and iron overload can result in cell death. The ferric uptake regulator protein, Fur, controls iron homeostasis in most Gram-negative bacteria. In the human gastric pathogen , Fur is thought to have acquired extra functions to compensate for the relative paucity of regulatory genes. To identify genes regulated by iron and Fur, we used DNA array-based transcriptional profiling with RNA isolated from 26695 wild-type and mutant cells grown in iron-restricted and iron-replete conditions. Sixteen genes encoding proteins involved in metal metabolism, nitrogen metabolism, motility, cell wall synthesis and cofactor synthesis displayed iron-dependent Fur-repressed expression. Conversely, 16 genes encoding proteins involved in iron storage, respiration, energy metabolism, chemotaxis, and oxygen scavenging displayed iron-induced Fur-dependent expression. Several Fur-regulated genes have been previously shown to be essential for acid resistance or gastric colonization in animal models, such as those encoding the hydrogenase and superoxide dismutase enzymes. Overall, there was a partial overlap between the sets of genes regulated by Fur and those previously identified as growth-phase, iron or acid regulated. Regulatory patterns were confirmed for five selected genes using Northern hybridization. In conclusion, Fur is a versatile regulator involved in many pathways essential for gastric colonization. These findings further delineate the central role of Fur in regulating the unique capacity of to colonize the human stomach.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27404-0
2005-02-01
2020-08-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510533.html?itemId=/content/journal/micro/10.1099/mic.0.27404-0&mimeType=html&fmt=ahah

References

  1. Akada J. K., Shirai M., Takeuchi H., Tsuda M., Nakazawa T. 2000; Identification of the urease operon in Helicobacter pylori and its control by mRNA decay in response to pH. Mol Microbiol36:1071–1084[CrossRef]
    [Google Scholar]
  2. Allan E., Clayton C. L., McLaren A., Wallace D. M., Wren B. W. 2001; Characterization of the low-pH responses of Helicobacter pylori using genomic DNA arrays. Microbiology147:2285–2292
    [Google Scholar]
  3. Alm R. A., Ling L. S., Moir D. T.. 20 other authors 1999; Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature397:176–180[CrossRef]
    [Google Scholar]
  4. Andrews S. C., Robinson A. K., Rodriguez-Quinones F. 2003; Bacterial iron homeostasis. FEMS Microbiol Rev27:215–237[CrossRef]
    [Google Scholar]
  5. Ang S., Lee C. Z., Peck K., Sindici M., Matrubutham U., Gleeson M. A., Wang J. T. 2001; Acid-induced gene expression in Helicobacter pylori: study in genomic scale by microarray. Infect Immun69:1679–1686[CrossRef]
    [Google Scholar]
  6. Barnard F. M., Loughlin M. F., Fainberg H. P., Messenger M. P., Ussery D. W., Williams P., Jenks P. J. 2004; Global regulation of virulence and the stress response by CsrA in the highly adapted human gastric pathogen Helicobacter pylori. Mol Microbiol51:15–32
    [Google Scholar]
  7. Bereswill S., Greiner S., van Vliet A. H. M., Waidner B., Fassbinder F., Schiltz E., Kusters J. G., Kist M. 2000; Regulation of ferritin-mediated cytoplasmic iron storage by the Ferric Uptake Regulator homolog (Fur) of Helicobacter pylori. J Bacteriol182:5948–5953[CrossRef]
    [Google Scholar]
  8. Bijlsma J. J. E., Waidner B., van Vliet A. H. M. & 7 other authors. 2002; The Ferric Uptake Regulator (Fur) homologue of Helicobacter pylori is involved in acid resistance. Infect Immun70:606–611[CrossRef]
    [Google Scholar]
  9. Blaser M. J., Berg D. E. 2001; Helicobacter pylori genetic diversity and risk of human disease. J Clin Invest107:767–773[CrossRef]
    [Google Scholar]
  10. Boneca I. G., de Reuse H., Epinat J. C., Pupin M., Labigne A., Moszer I. 2003; A revised annotation and comparative analysis of Helicobacter pylori genomes. Nucleic Acids Res31:1704–1714[CrossRef]
    [Google Scholar]
  11. Bury-Mone S., Thiberge J. M., Contreras M., Maitournam A., Labigne A., De Reuse H. 2004; Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori. Mol Microbiol53:623–638[CrossRef]
    [Google Scholar]
  12. Contreras M., Thiberge J. M., Mandrand-Berthelot M. A., Labigne A. 2003; Characterization of the roles of NikR, a nickel-responsive pleiotropic autoregulator of Helicobacter pylori. Mol Microbiol49:947–963[CrossRef]
    [Google Scholar]
  13. Conway T., Schoolnik G. K. 2003; Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol Microbiol47:879–889[CrossRef]
    [Google Scholar]
  14. Cooksley C., Jenks P. J., Green A., Cockayne A., Logan R. P., Hardie K. R. 2003; NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. J Med Microbiol52:461–469[CrossRef]
    [Google Scholar]
  15. Delany I., Spohn G., Rappuoli R., Scarlato V. 2001a; The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol Microbiol42:1297–1309
    [Google Scholar]
  16. Delany I., Pacheco A. B. F., Spohn G., Rappuoli R., Scarlato V. 2001b; Iron-dependent transcription of the frpB gene of Helicobacter pylori is controlled by the Fur protein. J Bacteriol183:4932–4937[CrossRef]
    [Google Scholar]
  17. Eymann C., Homuth G., Scharf C., Hecker M. 2002; Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol184:2500–2520[CrossRef]
    [Google Scholar]
  18. Fassbinder F., van Vliet A. H. M., Gimmel V., Kusters J. G., Kist M., Bereswill S. 2000; Identification of iron-regulated genes of Helicobacter pylori by a modified Fur Titration Assay (FURTA-Hp. FEMS Microbiol Lett184:225–229[CrossRef]
    [Google Scholar]
  19. Forsyth M. H., Cao P., Garcia P. P., Hall J. D., Cover T. L. 2002; Genome-wide transcriptional profiling in a histidine kinase mutant of Helicobacter pylori identifies members of a regulon. J Bacteriol184:4630–4635[CrossRef]
    [Google Scholar]
  20. Gilbert J. V., Ramakrishna J., Sunderman F. W., Wright A., Plaut A. G. Jr 1995; Protein Hpn: cloning and characterization of a histidine-rich metal-binding polypeptide in Helicobacter pylori and Helicobacter mustelae. Infect Immun63:2682–2688
    [Google Scholar]
  21. Hantke K. 2001; Iron and metal regulation in bacteria. Curr Opin Microbiol4:172–177[CrossRef]
    [Google Scholar]
  22. Harris A. G., Hinds F. E., Beckhouse A. G., Kolesnikow T., Hazell S. L. 2002; Resistance to hydrogen peroxide in Helicobacter pylori: role of catalase (KatA) and Fur, and functional analysis of a novel gene product designated ‘KatA-associated protein’. KapA(HP0874). Microbiology 148:3813–3825
    [Google Scholar]
  23. Homuth G., Masuda S., Mogk A., Kobayashi Y., Schumann W. 1997; The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol179:1153–1164
    [Google Scholar]
  24. Israel D. A., Salama N., Arnold C. N. & 8 other authors. 2001a; Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J Clin Invest107:611–620[CrossRef]
    [Google Scholar]
  25. Israel D. A., Salama N., Krishna U., Rieger U. M., Atherton J. C., Falkow S., Peek R. M. Jr. 2001b; Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc Natl Acad Sci U S A98:14625–14630[CrossRef]
    [Google Scholar]
  26. Josenhans C., Eaton K. A., Thevenot T., Suerbaum S. 2000; Switching of flagellar motility in Helicobacter pylori by reversible length variation of a short homopolymeric sequence repeat infliP, a gene encoding a basal body protein. Infect Immun68:4598–4603[CrossRef]
    [Google Scholar]
  27. Kim N., Marcus E. A., Wen Y., Weeks D. L., Scott D. R., Jung H. C., Song I. S., Sachs G. 2004; Genes of Helicobacter pylori regulated by attachment to AGS cells. Infect Immun72:2358–2368[CrossRef]
    [Google Scholar]
  28. Masse E., Gottesman S. 2002; A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A99:4620–4625[CrossRef]
    [Google Scholar]
  29. Merrell D. S., Goodrich M. L., Otto G., Tompkins L. S., Falkow S. 2003a; pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect Immun71:3529–3539[CrossRef]
    [Google Scholar]
  30. Merrell D. S., Thompson L. J., Kim C. C., Mitchell H., Tompkins L. S., Lee A., Falkow S. 2003b; Growth-phase-dependent response of Helicobacter pylori to iron starvation. Infect Immun71:6510–6525[CrossRef]
    [Google Scholar]
  31. Ollagnier-De-Choudens S., Mulliez E., Hewitson K. S., Fontecave M. 2002; Biotin synthase is a pyridoxal phosphate-dependent cysteine desulfurase. Biochemistry41:9145–9152[CrossRef]
    [Google Scholar]
  32. Olson J. W., Agar J. N., Johnson M. K., Maier R. J. 2000; Characterization of the NifU and NifS Fe-S cluster formation proteins essential for viability in Helicobacter pylori. Biochemistry39:16213–16219[CrossRef]
    [Google Scholar]
  33. Olson J. W., Mehta N. S., Maier R. J. 2001; Requirement of nickel metabolism proteins HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori. Mol Microbiol39:176–182[CrossRef]
    [Google Scholar]
  34. O'Toole P. W., Lane M. C., Porwollik S. 2000; Helicobacter pylori motility. Microbes Infect2:1207–1214[CrossRef]
    [Google Scholar]
  35. Palyada K., Threadgill D., Stintzi A. 2004; Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol186:4714–4729[CrossRef]
    [Google Scholar]
  36. Pease A. J., Roa B. R., Luo W., Winkler M. E. 2002; Positive growth rate-dependent regulation of the pdxA,ksgA, and pdxB genes of Escherichia coli K-12. J Bacteriol184:1359–1369[CrossRef]
    [Google Scholar]
  37. Pesci E. C., Pickett C. L. 1994; Genetic organization and enzymatic activity of a superoxide dismutase from the microaerophilic human pathogen, Helicobacter pylori. Gene 143:111–116[CrossRef]
    [Google Scholar]
  38. Salama N., Guillemin K., McDaniel T. K., Sherlock G., Tompkins L., Falkow S. 2000; A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci U S A97:14668–14673[CrossRef]
    [Google Scholar]
  39. Sanyal I., Cohen G., Flint D. H. 1994; Biotin synthase: purification, characterization as a [2Fe-2S]cluster protein, and in vitro activity of the Escherichia coli bioB gene product. Biochemistry33:3625–3631[CrossRef]
    [Google Scholar]
  40. Seyler R. W. Jr, Olson J. W., Maier R. J. 2001; Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization. Infect Immun69:4034–4040[CrossRef]
    [Google Scholar]
  41. Skouloubris S., Labigne A., De Reuse H. 2001; The AmiE aliphatic amidase and AmiF formamidase of Helicobacter pylori: natural evolution of two enzyme paralogues. Mol Microbiol40:596–609[CrossRef]
    [Google Scholar]
  42. Spiegelhalder C., Gerstenecker B., Kersten A., Schiltz E., Kist M. 1993; Purification of Helicobacter pylori superoxide dismutase and cloning and sequencing of the gene. Infect Immun61:5315–5325
    [Google Scholar]
  43. Thompson L. J., Merrell D. S., Neilan B. A., Mitchell H., Lee A., Falkow S. 2003; Gene expression profiling of Helicobacter pylori reveals a growth-phase-dependent switch in virulence gene expression. Infect Immun71:2643–2655[CrossRef]
    [Google Scholar]
  44. Tomb J. F., White O., Kerlavage A. R.. 39 other authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature388:539–547[CrossRef]
    [Google Scholar]
  45. van Vliet A. H. M., Kuipers E. J., Waidner B. & 7 other authors. 2001; Nickel-responsive induction of urease expression in Helicobacter pylori is mediated at the transcriptional level. Infect Immun69:4891–4897[CrossRef]
    [Google Scholar]
  46. van Vliet A. H. M., Stoof J., Vlasblom R. & 10 other authors. 2002a; The role of the Ferric Uptake Regulator (Fur) in regulation of Helicobacter pylori iron uptake. Helicobacter7:237–244[CrossRef]
    [Google Scholar]
  47. van Vliet A. H. M., Ketley J. M., Park S. F., Penn C. W. 2002b; The role of iron in Campylobacter gene regulation, metabolism and oxidative stress defense. FEMS Microbiol Rev26:173–186[CrossRef]
    [Google Scholar]
  48. van Vliet A. H. M., Stoof J., Poppelaars S. W., Bereswill S., Homuth G., Kist M., Kuipers E. J., Kusters J. G. 2003; Differential regulation of amidase- and formamidase-mediated ammonia production by the Helicobacter pylori. Fur repressor. J Biol Chem278:9052–9057[CrossRef]
    [Google Scholar]
  49. van Vliet A. H. M., Kuipers E. J., Stoof J., Poppelaars S. W., Kusters J. G. 2004; Acid-responsive gene induction of ammonia-producing enzymes in Helicobacter pylori is mediated via a metal-responsive repressor cascade. Infect Immun72:766–773[CrossRef]
    [Google Scholar]
  50. Waidner B., Greiner S., Odenbreit S. & 11 other authors. 2002; Essential role of ferritin Pfr in Helicobacter pylori iron metabolism and gastric colonization. Infect Immun70:3923–3929[CrossRef]
    [Google Scholar]
  51. Wen Y., Marcus E. A., Matrubutham U., Gleeson M. A., Scott D. R., Sachs G. 2003; Acid-adaptive genes of. Helicobacter pylori Infect Immun71:5921–5939[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27404-0
Loading
/content/journal/micro/10.1099/mic.0.27404-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error