Glycosyl hydrolases and transferases are crucial for the formation of a rigid but at the same time plastic cell wall in yeasts and fungi. The glucan hydrolase family 17 (GH17) contains the soluble cell-wall proteins Scw4p, Scw10p, Scw11p and Bgl2p. For Bgl2p, endoglucanase/glucanosyltransferase activity has been demonstrated, and Scw11p has been shown to be involved in cell separation. Here, Scw4p and Scw10p, which show 63 % amino acid identity, were characterized. and single mutants were sensitive towards cell-wall destabilizing agents, suggesting a role in cell-wall assembly or maintenance. Simultaneous deletion of and showed a synergistic effect, and activated the cell-wall compensatory mechanism in a PKC1-dependent manner. Both the amount of cell-wall chitin and the amount of mannoproteins attached to chitin were increased in mutant . Deletion of proved the critical role of chitin in . However, the mannoprotein Sed1p and the glucan synthase Fks2p were also crucial for cell-wall stability in mutant . The exchange of two conserved glutamate residues localized in the putative catalytic domain of GH17 family members strongly suggests that Scw10p acts as a 1,3--glucanase or as a 1,3--glucanosyltransferase. In addition, the synthetic interactions between Bgl2p and Scw10p which support a functional cooperation in cell-wall assembly were analysed. The data suggest that Scw4p and Scw10p act as glucanases or transglucosidases in concert with other cell-wall proteins to assure cell-wall integrity.


Article metrics loading...

Loading full text...

Full text loading...



  1. Baladron, V., Ufano, S., Dueñas, S., Martin-Cuadrado, A. B., del Rey, F. & Vazquez de Aldana, C. R.(2002). Eng1p, an endo-1,3-β-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot Cell 1, 774–786.[CrossRef] [Google Scholar]
  2. Cappellaro, C., Mrsa, V. & Tanner, W.(1998). New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol 180, 5030–5037. [Google Scholar]
  3. Chen, L., Fincher, G. B. & Hoj, P. B.(1993). Evolution of polysaccharide hydrolase substrate specificity. J Biol Chem 268, 13318–13326. [Google Scholar]
  4. Chen, L., Garrett, T. P. J., Fincher, G. B. & Hoj, P. B.(1995). A tetrad of ionizable amino acids is important for catalysis in barley β-glucanases. J Biol Chem 270, 8093–8101.[CrossRef] [Google Scholar]
  5. Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H. & Hieter, P.(1992). Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122.[CrossRef] [Google Scholar]
  6. Cid, V. J., Duran, D., del Rey, F., Snyder, M. P., Nombela, C. & Sanchez, M.(1995). Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59, 345–386. [Google Scholar]
  7. Colman-Lerner, A., Chin, T. E. & Brent, R.(2001). Yeast Cbk1 and Mob2 activate daughter-specific genetics programs to induce asymmetric cell fates. Cell 107, 739–750.[CrossRef] [Google Scholar]
  8. Davidson, E. A.(1966). Analysis of sugars in mucopolysaccharides. Methods Enzymol 8, 52–60. [Google Scholar]
  9. De Nobel, H., Ruiz, C., Martin, H., Morris, W., Brul, S., Molina, M. & Klis, F. M.(2000). Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology 146, 2121–2132. [Google Scholar]
  10. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F.(1956). Colorimetric method for determination of sugars and related substances. Anal Chem 28, 350–356.[CrossRef] [Google Scholar]
  11. Garcia, R., Bermejo, C., Grau, C., Perez, R., Rodriguez-Pena, J. M., Francois, J., Nombela, C. & Arroyo, J.(2004). The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem 279, 15183–15195.[CrossRef] [Google Scholar]
  12. Garcia-Rodriguez, L. J., Trilla, J. A., Castro, C., Valdivieso, M. H., Duran, A. & Roncero, C.(2000). Characterization of the chitin biosynthesis process as a compensatory mechanism in the fks1 mutant of Saccharomyces cerevisiae. FEBS Lett 478, 84–88.[CrossRef] [Google Scholar]
  13. Gietz, R. D., Schiestl, R. H., Willems, A. R. & Woods, R. A.(1995). Studies of the transformations of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360.[CrossRef] [Google Scholar]
  14. Goldman, R. C., Sullivan, P. A., Zakula, D. & Capobianco, J. O.(1995). Kinetics of β-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. Eur J Biochem 227, 372–378.[CrossRef] [Google Scholar]
  15. Hagen, I., Ecker, M., Lagorce, A. & 8 other authors(2004). Sed1p and Srl1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins. Mol Microbiol 52, 1413–1425.[CrossRef] [Google Scholar]
  16. Hartland, R. P., Vermeulen, C. A., Klis, F. M., Sietsma, J. H. & Wessels, J. G.(1994). The linkage of (1-3)-β-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae. Yeast 10, 1591–1599.[CrossRef] [Google Scholar]
  17. Heinisch, J. J., Lorberg, A., Schmitz, H. P. & Jacoby, J. J.(1999). The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32, 671–680.[CrossRef] [Google Scholar]
  18. Henrissat, B. & Bairoch, A.(1996). Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316, 695–696. [Google Scholar]
  19. Igual, J. C., Johnson, A. L. & Johnston, L. H.(1996). Coordinated regulation of gene expression by the cell cycle transcription factor SWI4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J 15, 5001–5013. [Google Scholar]
  20. Jung, U. S. & Levin, D. E.(1999). Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signaling pathway. Mol Microbiol 34, 1049–1057.[CrossRef] [Google Scholar]
  21. Kaiser, C., Michaelis, S. & Mitchel, A.(1994).Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  22. Kapteyn, J. C., Ram, A. F. J., Groos, E. M., Kollar, R., Montijn, R. C., Van Den Ende, H., Llobell, A., Cabib, E. & Klis, F. M.(1997). Altered extent of cross-linking of β-1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall β-1,3-glucan content. J Bacteriol 179, 6279–6284. [Google Scholar]
  23. Kirchrath, L., Lorberg, A., Schmitz, H.-P., Gengenbacher, U. & Heinisch, J. J.(2000). Comparative genetic and physiological studies of the MAP kinase Mpk1p from Kluyveromyces lactis and Saccharomyces cerevisiae. J Mol Biol 300, 743–758.[CrossRef] [Google Scholar]
  24. Klis, F. M., Mol, P., Hellingwerf, K. & Brul, S.(2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26, 239–256.[CrossRef] [Google Scholar]
  25. Kollar, R., Petrakova, E., Ashwell, G., Robbins, P. W. & Cabib, E.(1995). Architecture of the yeast cell wall: the linkage between chitin and β(1-3)-glucan. J Biol Chem 270, 1170–1178.[CrossRef] [Google Scholar]
  26. Kollar, R., Reinhold, B. B., Petrakova, E., Yeh, H. J. C., Ashwell, G., Drgonova, J., Kapteyn, J. C., Klis, F. M. & Cabib, E.(1997). Architecture of the yeast cell wall: β(1→6)-glucan interconnects mannoprotein, β(1→3)-glucan, and chitin. J Biol Chem 272, 17762–17775.[CrossRef] [Google Scholar]
  27. Lagorce, A., Hauser, N. C., Labourdette, D., Rodriguez, C., Martin-Yken, H., Arroyo, J., Hoheisel, J. D. & Francois, J.(2003). Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278, 20345–20357.[CrossRef] [Google Scholar]
  28. La Valle, R., Sandini, S., Gomez, M. J., Mondello, F., Romagnoli, G., Nisini, R. & Cassone, A.(2000). Generation of recombinant 65-kilodalton mannoprotein, a major antigen target of cell-mediated immune response to Candida albicans. Infect Immun 68, 6777–6784.[CrossRef] [Google Scholar]
  29. Lommel, M., Bagnat, M. & Strahl, S.(2004). Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol Cell Biol 24, 46–57.[CrossRef] [Google Scholar]
  30. Lussier, M., Sdicu, A.-M., Shahinian, S. & Bussey, H.(1998). The Candida albicans KRE9 gene is required for cell wall β-1,6-glucan synthesis and is essential for growth on glucose. Proc Natl Acad Sci U S A 95, 9825–9830.[CrossRef] [Google Scholar]
  31. Madden, K., Sheu, Y. J., Baetz, K., Andrews, B. & Snyder, M.(1997). SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science 275, 1781–1784.[CrossRef] [Google Scholar]
  32. Martin-Cuadrado, A. B., Duenas, E., Sipiczki, M., Vazquez de Aldana, C. R. & del Rey, F.(2003). The endo-β-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J Cell Sci 116, 1689–1698.[CrossRef] [Google Scholar]
  33. Mazur, P., Morin, N., Baginsky, W., El-Sherbeini, M., Clemas, J. A., Nielsen, J. B. & Foor, F.(1995). Differential expression and function of two homologous subunits of yeast 1,3-β-d-glucan synthase. Mol Cell Biol 15, 5671–5681. [Google Scholar]
  34. Mouassite, M., Camougrand, N., Schwob, E., Demaison, G., Laclau, M. & Guerin, M.(2000). The “SUN” family: yeast SUN4/SCW3 is involved in cell septation. Yeast 16, 905–919.[CrossRef] [Google Scholar]
  35. Mouyna, I., Fontaine, T., Vai, M., Monod, M., Fonzi, W. A., Diaquin, M., Popolo, L., Hartland, R. P. & Latge, J.-P.(2000). Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275, 14882–14889.[CrossRef] [Google Scholar]
  36. Mrša, V., Klebl, F. & Tanner, W.(1993). Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-β-1,3-glucanase. J Bacteriol 175, 2102–2106. [Google Scholar]
  37. Popolo, L. & Vai, M.(1999). The Gas1 glycoprotein, a putative wall polymer cross-linker. Biochim Biophys Acta 1426, 385–400.[CrossRef] [Google Scholar]
  38. Popolo, L., Gilardelli, D., Bonfante, P. & Vai, M.(1997). Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1Δ mutant of Saccharomyces cerevisiae. J Bacteriol 179, 463–469. [Google Scholar]
  39. Popolo, L., Gualtieri, T. & Ragni, E.(2001). The yeast cell-wall salvage pathway. Med Mycol 39, 111–121.[CrossRef] [Google Scholar]
  40. Rodriguez-Peña, J. M., Cid, V. J., Arroyo, J. & Nombela, C.(2000). A novel family of cell-wall related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20, 3245–3255.[CrossRef] [Google Scholar]
  41. Sambrook, J., Fritsch, E. F. & Maniatis, T.(1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  42. Shimoi, H., Kitagaki, H., Ohmori, H., Iimura, Y. & Ito, K.(1998). Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180, 3381–3387. [Google Scholar]
  43. Skory, C. D. & Freer, S. N.(1995). Cloning and characterization of a gene encoding a cell-bound, extracellular β-glucosidase in the yeast Candida wickerhamii. Appl Environ Microbiol 61, 518–525. [Google Scholar]
  44. Smits, G. J., van den Ende, H. & Klis, F. M.(2001). Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147, 781–794. [Google Scholar]
  45. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. & Futcher, B.(1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273–3297.[CrossRef] [Google Scholar]
  46. Stagljar, I., Korostensky, C., Johnsson, N. & Te Heeden, S.(1998). A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci U S A 95, 5187–5192.[CrossRef] [Google Scholar]
  47. Valdivieso, H. N., Ferrario, L., Vai, M., Duran, V. & Popolo, L.(2000). Chitin synthesis in gas1 mutant of Saccharomyces cerevisiae. J Bacteriol 182, 4752–4757.[CrossRef] [Google Scholar]
  48. Van Der Vaart, J. M., Caro, L. H. P., Chapman, J. W., Klis, F. M. & Verrips, C. T.(1995). Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177, 3104–3110. [Google Scholar]
  49. Varghese, J. N., Garrett, T. P. J., Colman, P. M., Chen, L., Hoj, P. B. & Fincher, G. B.(1994). Three-dimensional structures of two plant β-glucan endohydrolases with distinct substrate specificities. Proc Natl Acad Sci U S A 91, 2785–2789.[CrossRef] [Google Scholar]
  50. Vink, E., Vossen, J. H., Ram, A. F., van den Ende, H., Brekelmans, S., de Nobel, H. & Klis, F. M.(2002). The protein kinase Kic1 affects 1,6-β-glucan levels in the cell wall of Saccharomyces cerevisiae. Microbiology 148, 4035–4048. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error