1887

Abstract

Glycosyl hydrolases and transferases are crucial for the formation of a rigid but at the same time plastic cell wall in yeasts and fungi. The glucan hydrolase family 17 (GH17) contains the soluble cell-wall proteins Scw4p, Scw10p, Scw11p and Bgl2p. For Bgl2p, endoglucanase/glucanosyltransferase activity has been demonstrated, and Scw11p has been shown to be involved in cell separation. Here, Scw4p and Scw10p, which show 63 % amino acid identity, were characterized. and single mutants were sensitive towards cell-wall destabilizing agents, suggesting a role in cell-wall assembly or maintenance. Simultaneous deletion of and showed a synergistic effect, and activated the cell-wall compensatory mechanism in a PKC1-dependent manner. Both the amount of cell-wall chitin and the amount of mannoproteins attached to chitin were increased in mutant . Deletion of proved the critical role of chitin in . However, the mannoprotein Sed1p and the glucan synthase Fks2p were also crucial for cell-wall stability in mutant . The exchange of two conserved glutamate residues localized in the putative catalytic domain of GH17 family members strongly suggests that Scw10p acts as a 1,3--glucanase or as a 1,3--glucanosyltransferase. In addition, the synthetic interactions between Bgl2p and Scw10p which support a functional cooperation in cell-wall assembly were analysed. The data suggest that Scw4p and Scw10p act as glucanases or transglucosidases in concert with other cell-wall proteins to assure cell-wall integrity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27293-0
2004-10-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503197.html?itemId=/content/journal/micro/10.1099/mic.0.27293-0&mimeType=html&fmt=ahah

References

  1. Baladron, V., Ufano, S., Dueñas, S., Martin-Cuadrado, A. B., del Rey, F. & Vazquez de Aldana, C. R. ( 2002; ). Eng1p, an endo-1,3-β-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot Cell 1, 774–786.[CrossRef]
    [Google Scholar]
  2. Cappellaro, C., Mrsa, V. & Tanner, W. ( 1998; ). New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol 180, 5030–5037.
    [Google Scholar]
  3. Chen, L., Fincher, G. B. & Hoj, P. B. ( 1993; ). Evolution of polysaccharide hydrolase substrate specificity. J Biol Chem 268, 13318–13326.
    [Google Scholar]
  4. Chen, L., Garrett, T. P. J., Fincher, G. B. & Hoj, P. B. ( 1995; ). A tetrad of ionizable amino acids is important for catalysis in barley β-glucanases. J Biol Chem 270, 8093–8101.[CrossRef]
    [Google Scholar]
  5. Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H. & Hieter, P. ( 1992; ). Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122.[CrossRef]
    [Google Scholar]
  6. Cid, V. J., Duran, D., del Rey, F., Snyder, M. P., Nombela, C. & Sanchez, M. ( 1995; ). Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59, 345–386.
    [Google Scholar]
  7. Colman-Lerner, A., Chin, T. E. & Brent, R. ( 2001; ). Yeast Cbk1 and Mob2 activate daughter-specific genetics programs to induce asymmetric cell fates. Cell 107, 739–750.[CrossRef]
    [Google Scholar]
  8. Davidson, E. A. ( 1966; ). Analysis of sugars in mucopolysaccharides. Methods Enzymol 8, 52–60.
    [Google Scholar]
  9. De Nobel, H., Ruiz, C., Martin, H., Morris, W., Brul, S., Molina, M. & Klis, F. M. ( 2000; ). Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology 146, 2121–2132.
    [Google Scholar]
  10. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. ( 1956; ). Colorimetric method for determination of sugars and related substances. Anal Chem 28, 350–356.[CrossRef]
    [Google Scholar]
  11. Garcia, R., Bermejo, C., Grau, C., Perez, R., Rodriguez-Pena, J. M., Francois, J., Nombela, C. & Arroyo, J. ( 2004; ). The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem 279, 15183–15195.[CrossRef]
    [Google Scholar]
  12. Garcia-Rodriguez, L. J., Trilla, J. A., Castro, C., Valdivieso, M. H., Duran, A. & Roncero, C. ( 2000; ). Characterization of the chitin biosynthesis process as a compensatory mechanism in the fks1 mutant of Saccharomyces cerevisiae. FEBS Lett 478, 84–88.[CrossRef]
    [Google Scholar]
  13. Gietz, R. D., Schiestl, R. H., Willems, A. R. & Woods, R. A. ( 1995; ). Studies of the transformations of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360.[CrossRef]
    [Google Scholar]
  14. Goldman, R. C., Sullivan, P. A., Zakula, D. & Capobianco, J. O. ( 1995; ). Kinetics of β-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. Eur J Biochem 227, 372–378.[CrossRef]
    [Google Scholar]
  15. Hagen, I., Ecker, M., Lagorce, A. & 8 other authors ( 2004; ). Sed1p and Srl1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins. Mol Microbiol 52, 1413–1425.[CrossRef]
    [Google Scholar]
  16. Hartland, R. P., Vermeulen, C. A., Klis, F. M., Sietsma, J. H. & Wessels, J. G. ( 1994; ). The linkage of (1-3)-β-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae. Yeast 10, 1591–1599.[CrossRef]
    [Google Scholar]
  17. Heinisch, J. J., Lorberg, A., Schmitz, H. P. & Jacoby, J. J. ( 1999; ). The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32, 671–680.[CrossRef]
    [Google Scholar]
  18. Henrissat, B. & Bairoch, A. ( 1996; ). Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316, 695–696.
    [Google Scholar]
  19. Igual, J. C., Johnson, A. L. & Johnston, L. H. ( 1996; ). Coordinated regulation of gene expression by the cell cycle transcription factor SWI4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J 15, 5001–5013.
    [Google Scholar]
  20. Jung, U. S. & Levin, D. E. ( 1999; ). Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signaling pathway. Mol Microbiol 34, 1049–1057.[CrossRef]
    [Google Scholar]
  21. Kaiser, C., Michaelis, S. & Mitchel, A. ( 1994; ). Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  22. Kapteyn, J. C., Ram, A. F. J., Groos, E. M., Kollar, R., Montijn, R. C., Van Den Ende, H., Llobell, A., Cabib, E. & Klis, F. M. ( 1997; ). Altered extent of cross-linking of β-1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall β-1,3-glucan content. J Bacteriol 179, 6279–6284.
    [Google Scholar]
  23. Kirchrath, L., Lorberg, A., Schmitz, H.-P., Gengenbacher, U. & Heinisch, J. J. ( 2000; ). Comparative genetic and physiological studies of the MAP kinase Mpk1p from Kluyveromyces lactis and Saccharomyces cerevisiae. J Mol Biol 300, 743–758.[CrossRef]
    [Google Scholar]
  24. Klis, F. M., Mol, P., Hellingwerf, K. & Brul, S. ( 2002; ). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26, 239–256.[CrossRef]
    [Google Scholar]
  25. Kollar, R., Petrakova, E., Ashwell, G., Robbins, P. W. & Cabib, E. ( 1995; ). Architecture of the yeast cell wall: the linkage between chitin and β(1-3)-glucan. J Biol Chem 270, 1170–1178.[CrossRef]
    [Google Scholar]
  26. Kollar, R., Reinhold, B. B., Petrakova, E., Yeh, H. J. C., Ashwell, G., Drgonova, J., Kapteyn, J. C., Klis, F. M. & Cabib, E. ( 1997; ). Architecture of the yeast cell wall: β(1→6)-glucan interconnects mannoprotein, β(1→3)-glucan, and chitin. J Biol Chem 272, 17762–17775.[CrossRef]
    [Google Scholar]
  27. Lagorce, A., Hauser, N. C., Labourdette, D., Rodriguez, C., Martin-Yken, H., Arroyo, J., Hoheisel, J. D. & Francois, J. ( 2003; ). Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278, 20345–20357.[CrossRef]
    [Google Scholar]
  28. La Valle, R., Sandini, S., Gomez, M. J., Mondello, F., Romagnoli, G., Nisini, R. & Cassone, A. ( 2000; ). Generation of recombinant 65-kilodalton mannoprotein, a major antigen target of cell-mediated immune response to Candida albicans. Infect Immun 68, 6777–6784.[CrossRef]
    [Google Scholar]
  29. Lommel, M., Bagnat, M. & Strahl, S. ( 2004; ). Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol Cell Biol 24, 46–57.[CrossRef]
    [Google Scholar]
  30. Lussier, M., Sdicu, A.-M., Shahinian, S. & Bussey, H. ( 1998; ). The Candida albicans KRE9 gene is required for cell wall β-1,6-glucan synthesis and is essential for growth on glucose. Proc Natl Acad Sci U S A 95, 9825–9830.[CrossRef]
    [Google Scholar]
  31. Madden, K., Sheu, Y. J., Baetz, K., Andrews, B. & Snyder, M. ( 1997; ). SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science 275, 1781–1784.[CrossRef]
    [Google Scholar]
  32. Martin-Cuadrado, A. B., Duenas, E., Sipiczki, M., Vazquez de Aldana, C. R. & del Rey, F. ( 2003; ). The endo-β-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J Cell Sci 116, 1689–1698.[CrossRef]
    [Google Scholar]
  33. Mazur, P., Morin, N., Baginsky, W., El-Sherbeini, M., Clemas, J. A., Nielsen, J. B. & Foor, F. ( 1995; ). Differential expression and function of two homologous subunits of yeast 1,3-β-d-glucan synthase. Mol Cell Biol 15, 5671–5681.
    [Google Scholar]
  34. Mouassite, M., Camougrand, N., Schwob, E., Demaison, G., Laclau, M. & Guerin, M. ( 2000; ). The “SUN” family: yeast SUN4/SCW3 is involved in cell septation. Yeast 16, 905–919.[CrossRef]
    [Google Scholar]
  35. Mouyna, I., Fontaine, T., Vai, M., Monod, M., Fonzi, W. A., Diaquin, M., Popolo, L., Hartland, R. P. & Latge, J.-P. ( 2000; ). Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275, 14882–14889.[CrossRef]
    [Google Scholar]
  36. Mrša, V., Klebl, F. & Tanner, W. ( 1993; ). Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-β-1,3-glucanase. J Bacteriol 175, 2102–2106.
    [Google Scholar]
  37. Popolo, L. & Vai, M. ( 1999; ). The Gas1 glycoprotein, a putative wall polymer cross-linker. Biochim Biophys Acta 1426, 385–400.[CrossRef]
    [Google Scholar]
  38. Popolo, L., Gilardelli, D., Bonfante, P. & Vai, M. ( 1997; ). Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1Δ mutant of Saccharomyces cerevisiae. J Bacteriol 179, 463–469.
    [Google Scholar]
  39. Popolo, L., Gualtieri, T. & Ragni, E. ( 2001; ). The yeast cell-wall salvage pathway. Med Mycol 39, 111–121.[CrossRef]
    [Google Scholar]
  40. Rodriguez-Peña, J. M., Cid, V. J., Arroyo, J. & Nombela, C. ( 2000; ). A novel family of cell-wall related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20, 3245–3255.[CrossRef]
    [Google Scholar]
  41. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  42. Shimoi, H., Kitagaki, H., Ohmori, H., Iimura, Y. & Ito, K. ( 1998; ). Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180, 3381–3387.
    [Google Scholar]
  43. Skory, C. D. & Freer, S. N. ( 1995; ). Cloning and characterization of a gene encoding a cell-bound, extracellular β-glucosidase in the yeast Candida wickerhamii. Appl Environ Microbiol 61, 518–525.
    [Google Scholar]
  44. Smits, G. J., van den Ende, H. & Klis, F. M. ( 2001; ). Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147, 781–794.
    [Google Scholar]
  45. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. & Futcher, B. ( 1998; ). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273–3297.[CrossRef]
    [Google Scholar]
  46. Stagljar, I., Korostensky, C., Johnsson, N. & Te Heeden, S. ( 1998; ). A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci U S A 95, 5187–5192.[CrossRef]
    [Google Scholar]
  47. Valdivieso, H. N., Ferrario, L., Vai, M., Duran, V. & Popolo, L. ( 2000; ). Chitin synthesis in gas1 mutant of Saccharomyces cerevisiae. J Bacteriol 182, 4752–4757.[CrossRef]
    [Google Scholar]
  48. Van Der Vaart, J. M., Caro, L. H. P., Chapman, J. W., Klis, F. M. & Verrips, C. T. ( 1995; ). Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177, 3104–3110.
    [Google Scholar]
  49. Varghese, J. N., Garrett, T. P. J., Colman, P. M., Chen, L., Hoj, P. B. & Fincher, G. B. ( 1994; ). Three-dimensional structures of two plant β-glucan endohydrolases with distinct substrate specificities. Proc Natl Acad Sci U S A 91, 2785–2789.[CrossRef]
    [Google Scholar]
  50. Vink, E., Vossen, J. H., Ram, A. F., van den Ende, H., Brekelmans, S., de Nobel, H. & Klis, F. M. ( 2002; ). The protein kinase Kic1 affects 1,6-β-glucan levels in the cell wall of Saccharomyces cerevisiae. Microbiology 148, 4035–4048.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27293-0
Loading
/content/journal/micro/10.1099/mic.0.27293-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error