1887

Abstract

Pkh1 and Pkh2 (orthologues of mammalian protein kinase, PDK1) are functionally redundant. These kinases activate three AGC family kinases involved in the maintenance of cell wall integrity: Ypk1 and Ypk2, two closely related, functionally redundant enzymes (orthologues of mammalian protein kinase SGK), and Pkc1 (orthologue of mammalian protein kinase PRK2). Pkh1 and Pkh2 activate Ypk1, Ypk2 and Pkc1 by phosphorylating a Thr in a conserved sequence motif (PDK1 site) within the activation loop of these proteins. A fourth protein kinase involved in growth control and stress response, Sch9 (orthologue of mammalian protein kinase c-Akt/PKB), also carries the conserved activation loop motif. Like other AGC family kinases, Ypk1, Ypk2, Pkc1 and Sch9 also carry a second conserved sequence motif situated in a region C-terminal to the catalytic domain, called the hydrophobic motif (PDK2 site). Currently, there is still controversy surrounding the identity of the enzyme responsible for phosphorylating this second site and the necessity for phosphorylation at this site for function. Here, genetic and biochemical methods have been used to investigate the physiological consequences of phosphorylation at the PDK1 and PDK2 sites of Ypk1, Pkc1 and Sch9. It was found that phosphorylation at the PDK1 site in the activation loop is indispensable for the essential functions of all three kinases , whereas phosphorylation at the PDK2 motif plays a non-essential and much more subtle role in modulating the ability of these kinases to regulate the downstream processes in which they participate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27286-0
2004-10-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503289.html?itemId=/content/journal/micro/10.1099/mic.0.27286-0&mimeType=html&fmt=ahah

References

  1. Alessi, D. R. ( 2001; ). Discovery of PDKI, one of the missing links in insulin signal transduction. Biochem Soc Trans 29, 1–14.[CrossRef]
    [Google Scholar]
  2. Alessi, D. R. & Cohen, P. ( 1998; ). Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8, 55–62.[CrossRef]
    [Google Scholar]
  3. Alessi, D. R., Cohen, P., Ashworth, A., Cowley, S., Leevers, S. J. & Marshall, C. J. ( 1995; ). Assay and expression of mitogen-activated protein kinase, MAP kinase, and Raf. Methods Enzymol 255, 279–290.
    [Google Scholar]
  4. Alessi, D. R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P. & Hemmings, B. A. ( 1996; ). Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15, 6541–6551.
    [Google Scholar]
  5. Alessi, D. R., James, S. R., Downes, C. P., Holmes, A. B., Gaffney, P. R., Reese, C. B. & Cohen, P. ( 1997a; ). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Curr Biol 7, 261–269.[CrossRef]
    [Google Scholar]
  6. Alessi, D. R., Deak, M., Casamayor, A. & 9 other authors ( 1997b; ). 3-phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7, 776–789.[CrossRef]
    [Google Scholar]
  7. Alessi, D. R., Kozlowski, M. T., Weng, Q.-P., Morrice, N. & Avruch, J. ( 1998; ). 3-phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 8, 69–81.[CrossRef]
    [Google Scholar]
  8. Balendran, A., Casamayor, A., Deak, M., Paterson, A., Gaffney, P., Currie, R., Downes, C. P. & Alessi, D. R. ( 1999; ). PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol 9, 393–404.[CrossRef]
    [Google Scholar]
  9. Balendran, A., Biondi, R. M., Cheung, P. C. F., Casamayor, A., Deak, M. & Alessi, D. R. ( 2000; ). A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase C zeta (PKC zeta) and PKC-related kinase 2 by PDK1. J Biol Chem 275, 20806–20813.[CrossRef]
    [Google Scholar]
  10. Behn-Krappa, A. & Newton, A. C. ( 1999; ). The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation. Curr Biol 9, 728–737.[CrossRef]
    [Google Scholar]
  11. Belham, C., Comb, M. J. & Avruch, J. ( 2001; ). Identification of the NIMA family kinases NEK6/7 as regulators of the p70 ribosomal S6 kinase. Curr Biol 11, 1155–1167.[CrossRef]
    [Google Scholar]
  12. Biondi, R. M. ( 2004; ). Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation. Trends Biochem Sci 29, 136–142.[CrossRef]
    [Google Scholar]
  13. Biondi, R. M., Komander, D., Thomas, C. C., Lizcano, J. M., Deak, M., Alessi, D. R. & van Aalten, D. M. F. ( 2002; ). High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J 21, 4219–4228.[CrossRef]
    [Google Scholar]
  14. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  15. Brazil, D. P., Yang, Z.-Z. & Hemmings, B. A. ( 2004; ). Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29, 233–242.[CrossRef]
    [Google Scholar]
  16. Casamayor, A., Torrance, P. D., Kobayashi, T., Thorner, J. & Alessi, D. R. ( 1999; ). Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr Biol 9, 186–197.[CrossRef]
    [Google Scholar]
  17. Chan, T. O., Rittenhouse, S. E. & Tsichlis, P. N. ( 1999; ). AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68, 965–1014.[CrossRef]
    [Google Scholar]
  18. Chen, P., Lee, K. S. & Levin, D. E. ( 1993; ). A pair of putative protein kinase genes (YPK1 and YPK2) is required for cell growth in Saccharomyces cerevisiae. Mol Gen Genet 236, 443–447.
    [Google Scholar]
  19. Chou, M. M., Hou, W., Johnson, J., Graham, L. K., Lee, M. H., Chen, C. S., Newton, A. C., Schaffhausen, B. S. & Toker, A. ( 1998; ). Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr Biol 8, 1069–1077.[CrossRef]
    [Google Scholar]
  20. Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H. & Hieter, P. ( 1992; ). Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122.[CrossRef]
    [Google Scholar]
  21. Collins, B. J., Deak, M., Arthur, J. S. C., Armit, L. J. & Alessi, D. R. ( 2003; ). In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. EMBO J 22, 4202–4211.[CrossRef]
    [Google Scholar]
  22. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. ( 1995; ). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789.[CrossRef]
    [Google Scholar]
  23. Dedhar, S., Williams, B. & Hannigan, G. ( 1999; ). Integrin-linked kinase (ILK): a regulator of integrin and growth-factor signalling. Trend Cell Biol 9, 319–323.[CrossRef]
    [Google Scholar]
  24. deHart, A. K., Schnell, J. D., Allen, D. A. & Hicke, L. ( 2002; ). The conserved Pkh-Ypk kinase cascade is required for endocytosis in yeast. J Cell Biol 156, 241–248.[CrossRef]
    [Google Scholar]
  25. Dickson, R. C. & Lester, R. L. ( 1999a; ). Yeast sphingolipids. Biochim Biophys Acta 1426, 347–357.[CrossRef]
    [Google Scholar]
  26. Dickson, R. C. & Lester, R. L. ( 1999b; ). Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1438, 305–321.[CrossRef]
    [Google Scholar]
  27. Dong, L. Q., Landa, L. R., Wick, M. J., Zhu, L., Mukai, H., Ono, Y. & Liu, F. ( 2000; ). Phosphorylation of protein kinase N by phosphoinositide-dependent protein kinase-1 mediates insulin signals to the actin cytoskeleton. Proc Natl Acad Sci U S A 97, 5089–5094.[CrossRef]
    [Google Scholar]
  28. Dutil, E. M., Toker, A. & Newton, A. C. ( 1998; ). Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Curr Biol 8, 1366–1375.[CrossRef]
    [Google Scholar]
  29. Evan, G. I., Lewis, G. K., Ramsey, G. & Bishop, J. M. ( 1985; ). Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5, 3610–3616.
    [Google Scholar]
  30. Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. ( 2001; ). Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288–290.[CrossRef]
    [Google Scholar]
  31. Fields, F. O. ( 1991; ). Biochemical and molecular genetic analysis of protein kinase C function in the yeast Saccharomyces cerevisiae. PhD thesis, University of California, Berkeley, CA, USA.
  32. Fingar, D. C. & Blenis, J. ( 2004; ). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151–3171.[CrossRef]
    [Google Scholar]
  33. Flynn, P., Mellor, H., Casamassima, A. & Parker, P. J. ( 2000; ). Rho GTPase control of protein kinase C-related protein kinase activation by 3-phosphoinositide-dependent protein kinase. J Biol Chem 275, 11064–11070.[CrossRef]
    [Google Scholar]
  34. Friant, S., Lombardi, R., Schmelzle, T., Hall, M. N. & Riezman, H. ( 2001; ). Sphingoid base signaling via Pkh kinases is required for endocytosis in yeast. EMBO J 20, 6783–6792.[CrossRef]
    [Google Scholar]
  35. Frödin, M., Antal, T. L., Dummler, B. A., Jensen, C. J., Deak, M., Gammeltoft, S. & Biondi, R. M. ( 2002; ). A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J 21, 5396–5407.[CrossRef]
    [Google Scholar]
  36. Gao, T. & Newton, A. C. ( 2002; ). The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J Biol Chem 277, 31585–31592.[CrossRef]
    [Google Scholar]
  37. Gelperin, D., Horton, L., DeChant, A., Hensold, J. & Lemmon, S. K. ( 2002; ). Loss of Ypk1 function causes rapamycin sensitivity, inhibition of translation initiation and synthetic lethality in 14-3-3-deficient yeast. Genetics 161, 1453–1464.
    [Google Scholar]
  38. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  39. Hara, K., Maruki, Y., Long, X. M., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J. & Yonezawa, K. ( 2002; ). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189.[CrossRef]
    [Google Scholar]
  40. Heinisch, J. J., Lorberg, A., Schmitz, H. P. & Jacoby, J. J. ( 1999; ). The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32, 671–680.[CrossRef]
    [Google Scholar]
  41. Hill, J. E., Myers, A. M., Koerner, T. J. & Tzagoloff, A. ( 1986; ). Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2, 163–167.[CrossRef]
    [Google Scholar]
  42. Hodgkinson, C. P., Sale, E. M. & Sale, G. J. ( 2002; ). Characterization of PDK2 activity against protein kinase B gamma. Biochemistry 41, 10351–10359.[CrossRef]
    [Google Scholar]
  43. Ikushiro, H., Hayashi, H. & Kagamiyama, H. ( 2004; ). Reactions of serine palmitoyltransferase with serine and molecular mechanisms of the actions of serine derivatives as inhibitors. Biochemistry 43, 1082–1092.[CrossRef]
    [Google Scholar]
  44. Inagaki, M., Schmelzle, T., Yamaguchi, K., Irie, K., Hall, M. N. & Matsumoto, K. ( 1999; ). PDK1 homologs activate the Pkc1-mitogen-activated protein kinase pathway in yeast. Mol Cell Biol 19, 8344–8352.
    [Google Scholar]
  45. Jacinto, E. & Hall, M. N. ( 2003; ). Tor signalling in bugs, brain and brawn. Nature Rev Mol Cell Biol 4, 117–126.[CrossRef]
    [Google Scholar]
  46. Jensen, C. J., Buch, M. B., Krag, T. O., Hemmings, B. A., Gammeltoft, S. & Frödin, M. ( 1999; ). 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J Biol Chem 274, 27168–27176.[CrossRef]
    [Google Scholar]
  47. Jorgensen, P., Nishikawa, J. L., Breitkreutz, B. J. & Tyers, M. ( 2002; ). Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395–400.[CrossRef]
    [Google Scholar]
  48. Kamada, Y., Qadota, H., Python, C. P., Anraku, Y., Ohya, Y. & Levin, D. E. ( 1996; ). Activation of yeast protein kinase C by Rho1 GTPase. J Biol Chem 271, 9193–9196.[CrossRef]
    [Google Scholar]
  49. Kim, D. H. & Sabatini, D. M. ( 2004; ). Raptor and mTOR: subunits of a nutrient-sensitive complex. Curr Top Microbiol Immunol 279, 259–270.
    [Google Scholar]
  50. King, C. C., Zenke, F. T., Dawson, P. E., Dutil, E. M., Newton, A. C., Hemmings, B. A. & Bokoch, G. M. ( 2000a; ). Sphingosine is a novel activator of 3-phosphoinositide-dependent kinase 1. J Biol Chem 275, 18108–18113.[CrossRef]
    [Google Scholar]
  51. King, C. C., Gardiner, E. M. M., Zenke, F. T., Bohl, B. P., Newton, A. C., Hemmings, B. A. & Bokoch, G. M. ( 2000b; ). p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J Biol Chem 275, 41201–41209.[CrossRef]
    [Google Scholar]
  52. Kobayashi, T. & Cohen, P. ( 1999; ). Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J 339, 319–328.[CrossRef]
    [Google Scholar]
  53. Kroner, C., Eybrechts, K. & Akkerman, J. W. N. ( 2000; ). Dual regulation of platelet protein kinase B. J Biol Chem 275, 27790–27798.
    [Google Scholar]
  54. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  55. Lawlor, M. A. & Alessi, D. R. ( 2001; ). PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114, 2903–2910.
    [Google Scholar]
  56. Le Good, J. A., Ziegler, W. H., Parekh, D. B., Alessi, D. R., Cohen, P. & Parker, P. J. ( 1998; ). Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 281, 2042–2045.[CrossRef]
    [Google Scholar]
  57. Lemmon, M. A. ( 2003; ). Phosphoinositide recognition domains. Traffic 4, 201–213.[CrossRef]
    [Google Scholar]
  58. Leslie, N. R., Biondi, R. M. & Alessi, D. R. ( 2001; ). Phosphoinositide-regulated kinases and phosphoinositide phosphatases. Chem Rev 101, 2365–2380.[CrossRef]
    [Google Scholar]
  59. Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., Oppliger, W., Jenoe, P. & Hall, M. N. ( 2002; ). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10, 457–468.[CrossRef]
    [Google Scholar]
  60. Long, X., Muller, F. & Avruch, J. ( 2004; ). TOR action in mammalian cells and in Caenorhabditis elegans. Curr Top Microbiol Immunol 279, 115–138.
    [Google Scholar]
  61. Lorberg, A. & Hall, M. N. ( 2004; ). TOR: the first 10 years. Curr Top Microbiol Immunol 279, 1–18.
    [Google Scholar]
  62. Matsuo, T., Kubo, Y., Watanabe, Y. & Yamamoto, M. ( 2003; ). Schizosaccharomyces pombe AGC family kinase Gad8p forms a conserved signaling module with TOR and PDK1-like kinases. EMBO J 22, 3073–3083.[CrossRef]
    [Google Scholar]
  63. Maurer, R. A. ( 1988; ). Isolation of a yeast protein kinase gene by screening with a mammalian protein kinase cDNA. DNA 7, 469–474.[CrossRef]
    [Google Scholar]
  64. Misra, S., Miller, G. J. & Hurley, J. H. ( 2001; ). Recognizing phosphatidylinositol 3-phosphate. Cell 107, 559–562.[CrossRef]
    [Google Scholar]
  65. Momoi, M., Tanoue, D., Sun, Y., Takematsu, H., Suzuki, Y., Suzuki, M., Suzuki, A., Fujita, T. & Kozutsumi, Y. ( 2004; ). SLI1 (YGR212W) is a major gene conferring resistance to sphingolipid biosynthesis inhibitor ISP-1, and encodes an ISP-1 N-acetyltransferase in yeast. Biochem J 381, 321–328.[CrossRef]
    [Google Scholar]
  66. Nojima, H., Tokunaga, C., Eguchi, S. & 7 other authors ( 2003; ). The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates, p70 S6 kinase and 4E-BP1, through their TOR signaling (TOS) motif. J Biol Chem 278, 15461–15464.[CrossRef]
    [Google Scholar]
  67. Nonaka, H., Tanaka, K., Hirano, H., Fujiwara, T., Kohno, H., Umikawa, M., Mino, A. & Takai, Y. ( 1995; ). A downstream target of Rho1 small GTP-binding protein is Pkc1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J 14, 5931–5938.
    [Google Scholar]
  68. Park, J., Leong, M. L., Buse, P., Maiyar, A. C., Firestone, G. L. & Hemmings, B. A. ( 1999; ). Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J 18, 3024–3033.[CrossRef]
    [Google Scholar]
  69. Pullen, N., Dennis, P. B., Andjelkovic, M., Dufner, A., Kozma, S. C., Hemmings, B. A. & Thomas, G. ( 1998; ). Phosphorylation and activation of p70S6K by PDK1. Science 279, 707–710.[CrossRef]
    [Google Scholar]
  70. Rane, M. J., Coxon, P. Y., Powell, D. W., Webster, R., Klein, J. B., Pierce, W., Ping, P. P. & McLeish, K. R. ( 2001; ). p38 kinase-dependent MAPKAPK-2 activation functions as 3-phospho-inositide-dependent kinase-2 for Akt in human neutrophils. J Biol Chem 76, 3517–3523.
    [Google Scholar]
  71. Reinke, A., Anderson, S., McCaffery, J. M., Yates, J., Jr, Aronova, S., Chu, S., Fairclough, S., Iverson, C. & Wedaman, K. P. ( 2004; ). TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem 279, 14752–14762.[CrossRef]
    [Google Scholar]
  72. Reneke, J. E., Blumer, K. J., Courchesne, W. E. & Thorner, J. ( 1988; ). The carboxy-terminal segment of the yeast alpha-factor receptor is a regulatory domain. Cell 55, 221–234.[CrossRef]
    [Google Scholar]
  73. Roelants, F. M., Torrance, P. D., Bezman, N. & Thorner, J. ( 2002; ). Pkh1 and Pkh2 differentially phosphorylate and activate Ypk1 and Ypk2 and define protein kinase modules required for maintenance of cell wall integrity. Mol Biol Cell 13, 3005–3028.[CrossRef]
    [Google Scholar]
  74. Romanelli, A., Dreisbach, V. C. & Blenis, J. ( 2002; ). Characterization of phosphatidylinositol 3-kinase-dependent phosphorylation of the hydrophobic motif site Thr(389) in p70 S6 kinase 1. J Biol Chem 277, 40281–40289.[CrossRef]
    [Google Scholar]
  75. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  76. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  77. Scheid, M. P. & Woodgett, J. R. ( 2003; ). Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett 546, 108–112.[CrossRef]
    [Google Scholar]
  78. Schmelzle, T., Helliwell, S. B. & Hall, M. N. ( 2002; ). Yeast protein kinases and the RHO1 exchange factor TUS1 are novel components of the cell integrity pathway in yeast. Mol Cell Biol 22, 1329–1339.[CrossRef]
    [Google Scholar]
  79. Sherman, F., Fink, G. R. & Hicks, J. B. ( 1986; ). Laboratory Course Manual for Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  80. Sikorski, R. S. & Hieter, P. ( 1989; ). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.
    [Google Scholar]
  81. Storz, P. & Toker, A. ( 2002; ). 3′-phosphoinositide-dependent kinase-1 (PDK-1) in PI 3-kinase signaling. Front Biosci 7, 886–902.[CrossRef]
    [Google Scholar]
  82. Sun, Y., Taniguchi, R., Tanoue, D., Yamaji, T., Takematsu, H., Mori, K., Fujita, T., Kawasaki, T. & Kozutsumi, Y. ( 2000; ). Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. Mol Cell Biol 20, 4411–4419.[CrossRef]
    [Google Scholar]
  83. Toda, T., Cameron, S., Sass, P. & Wigler, M. ( 1988; ). SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev 2, 517–527.[CrossRef]
    [Google Scholar]
  84. Toker, A. & Newton, A. C. ( 2000; ). Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem 275, 8271–8274.[CrossRef]
    [Google Scholar]
  85. Tokunaga, C., Yoshino, K. & Yonezawa, K. ( 2004; ). mTOR integrates amino acid- and energy-sensing pathways. Biochem Biophys Res Commun 313, 443–446.[CrossRef]
    [Google Scholar]
  86. Torrance, P. D. ( 2000; ). Regulation and function of the protein kinases, Ypk1 and Ypk2, in the yeast Saccharomyces cerevisiae. PhD thesis, University of California, Berkeley, CA, USA.
  87. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  88. Vanhaesebroeck, B. & Alessi, D. R. ( 2000; ). The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346, 561–576.[CrossRef]
    [Google Scholar]
  89. Vincent, S. & Settleman, J. ( 1997; ). The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization. Mol Cell Biol 17, 2247–2256.
    [Google Scholar]
  90. Wedaman, K. P., Reinke, A., Anderson, S., Yates, J., Jr, McCaffery, J. M. & Powers, T. ( 2003; ). Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell 14, 1204–1220.[CrossRef]
    [Google Scholar]
  91. Yang, J., Cron, P., Thompson, V., Good, V. M., Hess, D., Hemmings, B. A. & Barford, D. ( 2002; ). Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol Cell 9, 1227–1240.[CrossRef]
    [Google Scholar]
  92. Zhang, X., Lester, R. L. & Dickson, R. C. ( 2004; ). Pil1p and Lsp1p negatively regulate the PDK1-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J Biol Chem 279, 22030–22038.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27286-0
Loading
/content/journal/micro/10.1099/mic.0.27286-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error