1887

Abstract

Data are presented from two-dimensional (2-D) PAGE analysis of strain Harlingen grown during aerobic and anaerobic culture, according to a modified Wayne dormancy model. cultures were grown to the transition point between exponential growth and stationary phase in the presence of oxygen (7 days) and then part of the cultures was shifted to anaerobic conditions for 16 days. Growth declined similarly during aerobic and anaerobic conditions, whereas the ATP consumption rapidly decreased in the anaerobic cultures. 2-D PAGE revealed 50 protein spots that were either unique to, or more abundant during, anaerobic conditions and 16 of these were identified by MALDI-TOF. These proteins were the -crystalline homologue (HspX), elongation factor Tu (Tuf), GroEL2, succinyl-CoA : 3-oxoacid-CoA transferase (ScoB), mycolic acid synthase (CmaA2), thioredoxin (TrxB2), -ketoacyl-ACP synthase (KasB), -alanine dehydrogenase (Ald), Rv2005c, Rv2629, Rv0560c, Rv2185c and Rv3866. Some protein spots were found to be proteolytic fragments, e.g. HspX and GroEL2. These data suggest that induces expression of about 1 % of its genes in response to dormancy.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27284-0
2004-11-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503821.html?itemId=/content/journal/micro/10.1099/mic.0.27284-0&mimeType=html&fmt=ahah

References

  1. Andersen A. B., Andersen P., Ljungqvist L. 1992; Structure and function of a 40,000-molecular-weight protein antigen of Mycobacterium tuberculosis . Infect Immun 56:1994–1998
    [Google Scholar]
  2. Barry C. E. 3rd, Lee R. E., Mdluli K., Sampson A. E., Schroeder B. G., Slayden R. A., Yuan Y. 1998; Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37:143–179 [CrossRef]
    [Google Scholar]
  3. Bernheim F. 1940; The effect of salicylate on the oxygen uptake of the tubercle bacillus. Science 92:204
    [Google Scholar]
  4. Betts J. C., Lukey P. T., Robb L. C., McAdam R. A., Duncan K. 2002; Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731 [CrossRef]
    [Google Scholar]
  5. Boon C., Dick T. 2002; Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol 184:6760–6767 [CrossRef]
    [Google Scholar]
  6. Boon C., Li R., Qi R., Dick T. 2001; Proteins of Mycobacterium bovis BCG induced in the Wayne dormancy model. J Bacteriol 183:2672–2676 [CrossRef]
    [Google Scholar]
  7. Brosch R., Gordon S. V., Billault A., Garnier T., Eiglmeier K., Soravito C., Barrell B. G., Cole S. T. 1998; Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics. Infect Immun 66:2221–2229
    [Google Scholar]
  8. Chen P., Ruiz R. E., Li Q., Silver R. F., Bishai W. R. 2000; Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene,sigF . Infect Immun 68:5575–5580 [CrossRef]
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J. & 38 other authors; 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  10. Cunningham A. F., Spreadbury C. L. 1998; Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton α-crystallin homologue. J Bacteriol 180:801–808
    [Google Scholar]
  11. Desjardin L. E., Hayes L. G., Sohaskey C. D., Wayne L. G., Eisenach K. D. 2001; Microaerophilic induction of the alpha-crystallin chaperone protein homologue (hspX) mRNA ofMycobacterium tuberculosis . J Bacteriol 183:5311–5316 [CrossRef]
    [Google Scholar]
  12. Dye C., Scheele S., Dolin P., Pathania V., Raviglione M. C. 1999; Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282:677–686 [CrossRef]
    [Google Scholar]
  13. Fernandes N. D., Wu Q. L., Kong D., Puyang X., Garg S., Husson R. N. 1999; A mycobacterial extracytoplasmic sigma factor involved in survival following heat shock and oxidative stress. J Bacteriol 181:4266–4274
    [Google Scholar]
  14. Florczyk M. A., McCue L. A., Stack R. F., Hauer C. R., McDonough K. A. 2001; Identification and characterization of mycobacterial proteins differentially expressed under standing and shaking culture conditions, including Rv2623 from a novel class of putative ATP-binding proteins. Infect Immun 69:5777–5785 [CrossRef]
    [Google Scholar]
  15. Gao L. Y., Laval F., Lawson E. H., Groger R. K., Woodruff A., Morisaki J. H., Cox J. S., Daffe M., Brown E. J. 2003; Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49:1547–1563 [CrossRef]
    [Google Scholar]
  16. George K. M., Yuan Y., Sherman D. R., Barry C. E. 3rd (1995; The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J Biol Chem 270:27292–27298 [CrossRef]
    [Google Scholar]
  17. Glickman M. S., Cox J. S., Jacobs W. R. Jr 2000; A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5:717–727 [CrossRef]
    [Google Scholar]
  18. Glickman M. S., Cahill S. M., Jacobs W. R. Jr 2001; The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase. J Biol Chem 276:2228–2233 [CrossRef]
    [Google Scholar]
  19. Grogan D. W., Cronan J. E. Jr 1997; Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441
    [Google Scholar]
  20. Gustavsson N., Diez A., Nyström T. 2000; The universal stress protein A of Escherichia coli is required for resistance to DNA damaging agents and is regulated by a RecA/FtsK-dependent regulatory pathway. Mol Microbiol 36:1494–1503
    [Google Scholar]
  21. Gustavsson N., Diez A., Nyström T. 2002; The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage. Mol Microbiol 43:107–117 [CrossRef]
    [Google Scholar]
  22. Harboe M. 1992; The significance of proteins actively secreted by Mycobacterium tuberculosis in relation to immunity and complications of mycobacterial diseases. Int J Lepr Other Mycobact Dis 60:470–476
    [Google Scholar]
  23. Hu Y., Coates A. R. 1999; Transcription of two sigma 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis . J Bacteriol 181:469–476
    [Google Scholar]
  24. Hutter B., Dick T. 1998; Increased alanine dehydrogenase activity during dormancy in Mycobacterium smegmatis. FEMS Microbiol Lett 167:7–11 [CrossRef]
    [Google Scholar]
  25. Jungblut P. R., Schaible U. E., Mollenkopf H.-J. 7 other authors 1999; Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 33:1103–1117
    [Google Scholar]
  26. Kiers A., Drost A. P., van Soolingen D., Veen J. 1997; Use of DNA fingerprinting in international source case finding during a large outbreak of tuberculosis in The Netherlands. Int J Tuberc Lung Dis 1:239–245
    [Google Scholar]
  27. Kremer L., Douglas J. D., Baulard A. R. 9 other authors 2000; Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis . J Biol Chem 275:16857–16864 [CrossRef]
    [Google Scholar]
  28. Kvint K., Nachin L., Diez A, Nyström T. 2003; The bacterial universal stress protein: function and regulation. Curr Opin Microbiol 6:140–145 [CrossRef]
    [Google Scholar]
  29. Mahairas G. G., Sabo P. J., Hickey M. J., Singh D. C., Stover C. K. 1996; Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis . J Bacteriol 178:1274–1282
    [Google Scholar]
  30. Manganelli R., Dubnau E., Tyagi S., Kramer F. R., Smith I. 1999; Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol 31:715–724 [CrossRef]
    [Google Scholar]
  31. Mattow J., Jungblut P. R., Muller E. C., Kaufmann S. H. 2001; Identification of acidic, low molecular mass proteins of Mycobacterium tuberculosis strain H37Rv by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Proteomics 1:494–507 [CrossRef]
    [Google Scholar]
  32. Minnikin D. E., Minnikin S. M., Goodfellow M., Stanford J. L. 1982; The mycolic acids of Mycobacterium chelonei . J Gen Microbiol 128:817–822
    [Google Scholar]
  33. Monahan I. M., Betts J., Banerjee D. K., Butcher P. D. 2001; Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147:459–471
    [Google Scholar]
  34. Murugasu-Oei B., Tay A., Dick T. 1999; Upregulation of stress response genes and ABC transporters in anaerobic stationary-phase Mycobacterium smegmatis. Mol Gen Genet 262:677–682 [CrossRef]
    [Google Scholar]
  35. Nilsson L. E., Hoffner S. E., Ansehn S. 1988; Rapid susceptibility testing of Mycobacterium tuberculosis by bioluminescent assay of mycobacterial ATP. Antimicrob Agents Chemother 32:1208–1212 [CrossRef]
    [Google Scholar]
  36. O'Toole R., Williams H. D. 2003; Universal stress proteins and Mycobacterium tuberculosis. Res Microbiol 154:387–392 [CrossRef]
    [Google Scholar]
  37. Paget M. S., Kang J. G., Roe J. H., Buttner M. J. 1998; sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). EMBO J 17:5776–5782 [CrossRef]
    [Google Scholar]
  38. Park H.-D., Guinn K. M., Harrell M. I., Liao R., Voskuil M. I., Tompa M., Schoolnik G. K., Sherman D. R. 2003; Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48:833–843 [CrossRef]
    [Google Scholar]
  39. Raman S., Song T., Puyang X., Bardarov S., Husson R. N, Jacobs W. R. Jr 2001; The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis . J Bacteriol 183:6119–6125 [CrossRef]
    [Google Scholar]
  40. Rosenkrands I., King A., Weldingh K., Moniatte M., Moertz E., Andersen P. 2000; Towards the proteome of Mycobacterium tuberculosis. Electrophoresis 21:3740–3756 [CrossRef]
    [Google Scholar]
  41. Rosenkrands I., Slayden R. A., Crawford J., Aasgaard C., Barry C. E., Andersen P. 2002; Hypoxic response of Mycobacterium tuberculosis studied by metabolic labelling and proteome analysis of cellular and extracellular proteins. J Bacteriol 184:3485–3491 [CrossRef]
    [Google Scholar]
  42. Sassetti C. M., Rubin E. J. 2003; Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100:12989–12994 [CrossRef]
    [Google Scholar]
  43. Schaeffer M. L., Agnihotri G., Volker C., Kallender H., Brennan P. J., Lonsdale J. T. 2001; Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J Biol Chem 276:47029–47037 [CrossRef]
    [Google Scholar]
  44. Sherman D. R., Voskuil M., Schnappinger D., Liao R., Harrell M. I., Schoolnik G. K. 2001; Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin. Proc Natl Acad Sci U S A 98:7534–7539 [CrossRef]
    [Google Scholar]
  45. Slayden R. A., Barry C. E. 3rd (2002; The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis . Tuberculosis 82:149–160 [CrossRef]
    [Google Scholar]
  46. Sonnenberg M. G., Belisle J. T. 1997; Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect Immun 65:4515–4524
    [Google Scholar]
  47. Sun Z., Cheng S.-J., Zhang H., Zhang Y. 2001; Salicylate uniquely induces a 27-kDa protein in tubercle bacillus. FEMS Microbiol Lett 203:211–216 [CrossRef]
    [Google Scholar]
  48. Tabira Y., Ohara N., Kitaura H., Matsumoto S., Naito M., Yamada T. 1998; The 16-kDa α-crystallin-like protein of Mycobacterium bovis BCG is produced under conditions of oxygen deficiency and is associated with ribosomes. Res Microbiol 149:255–264 [CrossRef]
    [Google Scholar]
  49. Talbot E. A., Perkins M. D., Silva S. F., Frothingham R. 1997; Disseminated bacille Calmette-Guerin disease after vaccination: case report and review. Clin Infect Dis 24:1139–1146 [CrossRef]
    [Google Scholar]
  50. Voskuil M. I., Schnappinger D., Visconti K. C., Harrell M. I., Dolganov G. M., Sherman D. R., Schoolnik G. K. 2003; Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713 [CrossRef]
    [Google Scholar]
  51. Wang A. Y., Cronan J. E. Jr 1994; The growth phase-dependent synthesis of cyclopropance fatty acids in Escherichia coli is the result of an RpoS(KatF)-dependent promoter plus enzyme instability. Mol Microbiol 11:1009–1017 [CrossRef]
    [Google Scholar]
  52. Wang A. Y., Grogan D. W., Cronan J. E. Jr 1992; Cyclopropane fatty acid synthase of Escherichia coli: deduced amino acid sequence, purification, and studies of the enzyme active site. Biochemistry 31:11020–11028 [CrossRef]
    [Google Scholar]
  53. Wayne L. G., Hayes L. G. 1996; An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069
    [Google Scholar]
  54. Wayne L. G., Sohaskey C. D. 2001; Nonreplicating persistence of Mycobacterium tuberculosis . Annu Rev Microbiol 55:139–163 [CrossRef]
    [Google Scholar]
  55. Wayne L. G., Sramek H. A. 1994; Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis . Antimicrob Agents Chemother 38:2054–2058 [CrossRef]
    [Google Scholar]
  56. Wong D. K., Lee B. Y., Horwitz M. A., Gibson B. W. 1999; Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect Immun 67:327–336
    [Google Scholar]
  57. Yuan Y., Lee R. E., Besra G. S., Belisle J. T., Barry C. E. 3rd (1995; Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 92:6630–6634 [CrossRef]
    [Google Scholar]
  58. Yuan Y., Crane D. D., Barry C. E. 3rd (1996; Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J Bacteriol 178:4484–4492
    [Google Scholar]
  59. Yuan Y., Crane D. D., Simpson R. M., Zhu Y. Q., Hickey M. J., Sherman D. R., Barry C. E. 3rd (1998. The 16-kDa α-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci U S A 959578–9583 [CrossRef]
    [Google Scholar]
  60. Zhang Z., Hillas P. J, Ortiz de Montellano P. R. 1999; Reduction of peroxides and dinitrobenzenes by Mycobacterium tuberculosis thioredoxin and thioredoxin reductase. Arch Biochem Biophys 363:19–26 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.27284-0
Loading
/content/journal/micro/10.1099/mic.0.27284-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error