1887

Abstract

Cells of the magnetotactic marine vibrio, strain MV-1, produce magnetite-containing magnetosomes when grown anaerobically or microaerobically. Stable, spontaneous, non-magnetotactic mutants were regularly observed when cells of MV-1 were cultured on solid media incubated under anaerobic or microaerobic conditions. Randomly amplified polymorphic DNA analysis showed that these mutants are not all genetically identical. Cellular iron content of one non-magnetotactic mutant strain, designated MV-1nm1, grown anaerobically, was ∼20- to 80-fold less than the iron content of wild-type (wt) MV-1 for the same iron concentrations, indicating that MV-1nm1 is deficient in some form of iron uptake. Comparative protein profiles of the two strains showed that MV-1nm1 did not produce several proteins produced by wt MV-1. To understand the potential roles of these proteins in iron transport better, one of these proteins was purified and characterized. This protein, a homodimer with an apparent subunit mass of about 19 kDa, was an iron-regulated, periplasmic protein (p19). Two potential ‘copper-handling’ motifs (MXM/MXM) are present in the amino acid sequence of p19, and the native protein binds copper in a 1 : 1 ratio. The structural gene for p19, (opper andling rotein) and two other putative genes upstream of were cloned and sequenced. These putative genes encode a protein similar to the iron permease, Ftr1, from the yeast , and a ferredoxin-like protein of unknown function. A periplasmic, copper-containing, iron(II) oxidase was also purified from wt MV-1 and MV-1nm1. This enzyme, like p19, was regulated by media iron concentration and contained four copper atoms per molecule of enzyme. It is hypothesized that ChpA, the iron permease and the iron(II) oxidase might have analogous functions for the three components of the copper-dependent high-affinity iron uptake system (Ctr1, Ftr1 and Fet3, respectively), and that strain MV-1 may have a similar iron uptake system. However, iron(II) oxidase purified from both wt MV-1 and MV-1nm1 displayed comparable iron oxidase activities using O as the electron acceptor, indicating that ChpA does not supply the multi-copper iron(II) oxidase with copper.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27233-0
2004-09-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/9/mic1502931.html?itemId=/content/journal/micro/10.1099/mic.0.27233-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Ames, G. F., Prody, C. & Kustu, S. ( 1984; ). Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacteriol 160, 1181–1183.
    [Google Scholar]
  3. Arnow, L. E. ( 1937; ). Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118, 531–537.
    [Google Scholar]
  4. Askwith, C., Eide, D., Van Ho, A., Bernard, P. S., Li, L., Davis-Kaplan, S., Sipe, D. M. & Kaplan, J. ( 1994; ). The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76, 403–410.[CrossRef]
    [Google Scholar]
  5. Atkin, C. L., Neilands, J. B. & Phaff, H. J. ( 1970; ). Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Crypotococcus melibiosum. J Bacteriol 103, 722–733.
    [Google Scholar]
  6. Bazylinski, D. A. & Frankel, R. B. ( 2000; ). Biologically-controlled mineralization of magnetic iron minerals by magnetotactic bacteria. In Environmental Microbe–Metal Interactions. Edited by D. R. Lovley. Washington, DC: American Society for Microbiology.
  7. Bazylinski, D. A. & Frankel, R. B. ( 2003; ). Biologically controlled mineralization in prokaryotes. Rev Mineral 54, 95–114.[CrossRef]
    [Google Scholar]
  8. Bazylinski, D. A. & Frankel, R. B. ( 2004; ). Magnetosome formation in prokaryotes. Nat Rev Microbiol 2, 217–230.[CrossRef]
    [Google Scholar]
  9. Bazylinski, D. A. & Moskowitz, B. M. ( 1997; ). Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance. Rev Mineral 35, 181–223.
    [Google Scholar]
  10. Bazylinski, D. A., Frankel, R. B. & Jannasch, H. W. ( 1988; ). Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334, 518–519.[CrossRef]
    [Google Scholar]
  11. Bazylinski, D. A., Garratt-Reed, A. J. & Frankel, R. B. ( 1994; ). Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Tech 27, 389–401.[CrossRef]
    [Google Scholar]
  12. Blakemore, R. P. ( 1975; ). Magnetotactic bacteria. Science 190, 377–379.[CrossRef]
    [Google Scholar]
  13. Blakemore, R. P., Maratea, D. & Wolfe, R. S. ( 1979; ). Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140, 720–729.
    [Google Scholar]
  14. Bradford, M. M. ( 1976; ). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  15. Bruschi, M. & Guerlesquin, F. ( 1988; ). Structure, function and evolution of bacterial ferredoxins. FEMS Microbiol Rev 4, 155–175.
    [Google Scholar]
  16. Bryant, S. & Manning, D. L. ( 1998; ). Formaldehyde gel electrophoresis of total RNA. Methods Mol Biol 86, 69–72.
    [Google Scholar]
  17. Buchrieser, C., Rusniok, C., Frangeul, L., Couve, E., Billault, A., Kunst, F., Carniel, E. & Glaser, P. ( 1999; ). The 102-kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect Immun 67, 4851–4861.
    [Google Scholar]
  18. Calugay, R. J., Miyashita, H., Okamura, Y. & Matsunaga, T. ( 2003; ). Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiol Lett 218, 371–375.[CrossRef]
    [Google Scholar]
  19. Dailey, H. A., Jr & Lascelles, J. ( 1977; ). Reduction of iron and synthesis of protoheme by Spirillum itersonii and other organisms. J Bacteriol 129, 815–820.
    [Google Scholar]
  20. Dancis, A., Klausner, R. D., Hinnebusch, A. G. & Barriocanal, J. G. ( 1990; ). Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10, 2294–2301.
    [Google Scholar]
  21. Dancis, A., Haile, D., Yuan, D. S. & Klausner, R. D. ( 1994a; ). The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem 269, 25660–25667.
    [Google Scholar]
  22. Dancis, A., Yuan, D. S., Haile, D., Askwith, C., Eide, D., Moehle, C., Kaplan, J. & Klausner, R. D. ( 1994b; ). Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76, 393–402.[CrossRef]
    [Google Scholar]
  23. Dassanayake, R. S. & Samaranayake, L. P. ( 2003; ). Random amplified polymorphic DNA fingerprinting: the basics. Methods Mol Biol 226, 117–122.
    [Google Scholar]
  24. Dean, A. J. ( 1999; ). Initial genomic characterization of magnetotactic bacteria. MS thesis. Iowa State University, Ames, IA.
  25. Dean, A. J. & Bazylinski, D. A. ( 1999; ). Genome analysis of several marine, magnetotactic bacterial strains by pulsed-field gel electrophoresis. Curr Microbiol 39, 219–225.[CrossRef]
    [Google Scholar]
  26. DeLong, E. F., Frankel, R. B. & Bazylinski, D. A. ( 1993; ). Multiple evolutionary origins of magnetotaxis in bacteria. Science 259, 803–806.[CrossRef]
    [Google Scholar]
  27. de Silva, D., Davis-Kaplan, S., Fergestad, J. & Kaplan, J. ( 1997; ). Purification and characterization of Fet3 protein, a yeast homologue of ceruloplasmin. J Biol Chem 272, 14208–14213.[CrossRef]
    [Google Scholar]
  28. DiSpirito, A. A. ( 1990; ). Soluble cytochrome c from Methylomonas A4. Methods Enzymol 188, 289–297.
    [Google Scholar]
  29. Eide, D., Davis-Kaplan, S., Jordan, I., Sipe, D. & Kaplan, J. ( 1992; ). Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently. J Biol Chem 267, 20774–20781.
    [Google Scholar]
  30. Escolar, L., Perez-Martin, J. & de Lorenzo, V. ( 1999; ). Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181, 6223–6229.
    [Google Scholar]
  31. Feinburg, A. P. & Vogelstein, B. ( 1983; ). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132, 6–13.[CrossRef]
    [Google Scholar]
  32. Frankel, R. B. & Bazylinski, D. A. ( 2003; ). Biologically induced mineralization by bacteria. Rev Mineral 54, 217–247.[CrossRef]
    [Google Scholar]
  33. Frankel, R. B., Bazylinski, D. A., Johnson, M. S. & Taylor, B. L. ( 1997; ). Magneto-aerotaxis in marine coccoid bacteria. Biophys J 73, 994–1000.[CrossRef]
    [Google Scholar]
  34. Furhop, J. H. ( 1975; ). Laboratory Methods in Porphyrin and Metalloporphyrin Research. New York, NY: Elsevier.
  35. Gardy, J. L., Spencer, C., Wang, K. & 8 other authors ( 2003; ). psort-b: Improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res 31, 3613–3617.[CrossRef]
    [Google Scholar]
  36. Gorby, Y. A., Beveridge, T. J. & Blakemore, R. P. ( 1988; ). Characterization of the bacterial magnetosome membrane. J Bacteriol 170, 834–841.
    [Google Scholar]
  37. Grünberg, K., Müller, E.-C., Otto, A., Reszka, R., Linder, D., Kube, M., Reinhardt, R. & Schüler, D. ( 2004; ). Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 70, 1040–1050.[CrossRef]
    [Google Scholar]
  38. Hassett, R. F., Yuan, D. S. & Kosman, D. J. ( 1998; ). Spectral and kinetic properties of the Fet3 protein from Saccharomyces cerevisiae, a multinuclear copper ferroxidase enzyme. J Biol Chem 273, 23274–23282.[CrossRef]
    [Google Scholar]
  39. Hepinstall, J. ( 1998; ). Isolation of total RNA from bacteria. Methods Mol Biol 86, 47–53.
    [Google Scholar]
  40. Hooper, A. B. & DiSpirito, A. A. ( 1985; ). In bacteria which grow on simple reductants, generation of a proton gradient involves extracytoplasmic oxidation of substrate. Microbiol Rev 49, 140–157.
    [Google Scholar]
  41. Huston, W. M., Jennings, M. P. & McEwan, A. G. ( 2002; ). The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase with a central role in iron acquisition. Mol Microbiol 45, 1741–1750.[CrossRef]
    [Google Scholar]
  42. Inoue, H., Nojima, H. & Okayama, H. ( 1990; ). High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28.[CrossRef]
    [Google Scholar]
  43. Janvier, B., Constantinidou, C., Aucher, P., Marshall, Z. V., Penn, C. W. & Fauchere, J. L. ( 1998; ). Characterization and gene sequencing of a 19-kDa periplasmic protein of Campylobacter jejuni/coli. Res Microbiol 149, 95–107.[CrossRef]
    [Google Scholar]
  44. Kimble, L. K., Mandelco, L., Woese, C. R. & Madigan, M. T. ( 1995; ). Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163, 259–267.[CrossRef]
    [Google Scholar]
  45. Koch, K. A., Pena, M. M. & Thiele, D. J. ( 1997; ). Copper-binding motifs in catalysis, transport, detoxification and signaling. Chem Biol 4, 549–560.[CrossRef]
    [Google Scholar]
  46. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  47. Löw, R. ( 1998; ). Nonradioactive northern blotting. Methods Mol Biol 86, 77–86.
    [Google Scholar]
  48. McCoy, E. C., Doyle, D., Burda, K., Corbeil, L. B. & Winter, A. J. ( 1975; ). Superficial antigens of Campylobacter (Vibrio) fetus: characterization of antiphagocytic component. Infect Immun 11, 517–525.
    [Google Scholar]
  49. McDonnel, A. & Staehelin, L. A. ( 1981; ). Detection of cytochrome f, a c-class cytochrome, with diaminobenzidine polyacrylamide gels. Anal Biochem 117, 40–44.[CrossRef]
    [Google Scholar]
  50. McKay, D. S., Gibson, E. K., Jr, Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D., Maechling, C. R. & Zare, R. N. ( 1996; ). Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273, 924–930.[CrossRef]
    [Google Scholar]
  51. Nakamura, C., Sakaguchi, T., Kudo, S., Burgess, J. G., Sode, K. & Matsunaga, T. ( 1993; ). Characterization of iron uptake in the magnetic bacterium Aquaspirillum sp. AMB-1. Appl Biochem Biotechnol 39/40, 169–176.[CrossRef]
    [Google Scholar]
  52. Nakamura, C., Burgess, J. G., Sode, K. & Matsunaga, T. ( 1995a; ). An iron-regulated gene, magA, encoding an iron transport protein of Magnetospirillum sp. strain AMB-1. J Biol Chem 270, 28392–28396.[CrossRef]
    [Google Scholar]
  53. Nakamura, C., Kikuchi, T., Burgess, J. G. & Matsunaga, T. ( 1995b; ). Iron-regulated expression and membrane localization of the magA protein in Magnetospirillum sp. strain AMB-1. J Biochem 118, 23–27.
    [Google Scholar]
  54. Neilands, J. B. ( 1995; ). Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270, 26723–26726.[CrossRef]
    [Google Scholar]
  55. Nelson, D. C., Waterbury, J. B. & Jannasch, H. W. ( 1982; ). Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa. Arch Microbiol 133, 172–177.[CrossRef]
    [Google Scholar]
  56. Noguchi, Y., Fujiwara, T., Yoshimatsu, K. & Fukumori, Y. ( 1999; ). Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum. J Bacteriol 181, 2142–2147.
    [Google Scholar]
  57. Palache, C., Berman, H. & Frondel, C. ( 1944; ). Dana's System of Mineralogy. New York, NY: Wiley.
  58. Paoletti, L. C. & Blakemore, R. P. ( 1986; ). Hydroxamate production by Aquaspirillum magnetotacticum. J Bacteriol 167, 73–76.
    [Google Scholar]
  59. Payne, S. M. ( 1994; ). Detection, isolation, and characterization of siderophores. Methods Enzymol 235, 329–344.
    [Google Scholar]
  60. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  61. Schübbe, S., Kube, M., Scheffel, A. & 7 other authors ( 2003; ). Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J Bacteriol 185, 5779–5790.[CrossRef]
    [Google Scholar]
  62. Schüler, D. & Baeuerlein, E. ( 1996; ). Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch Microbiol 166, 301–307.[CrossRef]
    [Google Scholar]
  63. Schwyn, B. & Neilands, J. B. ( 1987; ). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47–56.[CrossRef]
    [Google Scholar]
  64. Stearman, R., Yuan, D. S., Yamaguchi-Iwai, Y., Klausner, R. D. & Dancis, A. ( 1996; ). A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552–1557.[CrossRef]
    [Google Scholar]
  65. Stookey, L. L. ( 1970; ). Ferrozine – a new spectrophotometric reagent for iron. Anal Chem 42, 779–781.[CrossRef]
    [Google Scholar]
  66. Swancutt, M. A., Riley, B. S., Radolf, J. D. & Norgard, M. V. ( 1989; ). Molecular characterization of the pathogen-specific, 34-kilodalton membrane immunogen of Treponema pallidum. Infect Immun 57, 3314–3323.
    [Google Scholar]
  67. Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L., Clemett, S. J., McKay, D. S., Wentworth, S. J., Vali, H., Gibson, E. K., Jr & Romanek, C. S. ( 2000; ). Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta 64, 4049–4081.[CrossRef]
    [Google Scholar]
  68. Thomas-Keprta, K. L., Clemett, S. J., Bazylinski, D. A. & 7 other authors ( 2001; ). Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc Natl Acad Sci U S A 98, 2164–2169.[CrossRef]
    [Google Scholar]
  69. Thomas-Keprta, K. L., Clemett, S. J., Bazylinski, D. A., Kirschvink J. L., McKay, D. S., Wentworth, S. J., Vali, H., Gibson, E. K., Jr & Romanek, C. S. ( 2002; ). Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl Environ Microbiol 68, 3663–3672.[CrossRef]
    [Google Scholar]
  70. Thompson, L. M. & MacLeod, R. A. ( 1974; ). Biochemical localization of alkaline phosphatase in the cell wall of a marine pseudomonad. J Bacteriol 117, 819–825.
    [Google Scholar]
  71. Van Ho, A., Ward, D. M. & Kaplan, J. ( 2002; ). Transition metal transport in yeast. Annu Rev Microbiol 56, 237–261.[CrossRef]
    [Google Scholar]
  72. van Vliet, A. H., Wooldridge, K. G. & Ketley, J. M. ( 1998; ). Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180, 5291–5298.
    [Google Scholar]
  73. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  74. Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. ( 1990; ). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18, 6531–6535.[CrossRef]
    [Google Scholar]
  75. Zahn, J. A. & DiSpirito, A. A. ( 1996; ). Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178, 1018–1029.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27233-0
Loading
/content/journal/micro/10.1099/mic.0.27233-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error