1887

Abstract

The gene encoding Dam methyltransferase of was mutagenized by the insertion of a chloramphenicol-resistance cassette into the middle of the Dam coding sequence. This mutant construct was introduced into the chromosome by transformation and selection for Cam transformants. The authors have shown that several phenotypic properties, resistance to antibiotics, dyes and detergent as well as efficiency of transformation, depend on the Dam methylation state of the DNA. Although the major role of the methyl-directed mismatch repair (MMR) system is to repair postreplicative errors, it seems that in its effect is more apparent in repairing DNA damage caused by oxidative compounds. In the mutant treated with hydrogen peroxide, MMR is not targeted to newly replicated DNA strands and therefore mismatches are converted into single- and double-strand DNA breaks. This is shown by the increased peroxide sensitivity of the mutant and the finding that the sensitivity can be suppressed by a mutation inactivating MMR. In the mutant treated with nitrofurazone the resulting damage is not converted into DNA breaks but the high sensitivity is also suppressed by a mutation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27225-0
2004-11-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503773.html?itemId=/content/journal/micro/10.1099/mic.0.27225-0&mimeType=html&fmt=ahah

References

  1. Ahmad, I. & Rao, D. N. ( 1996; ). Chemistry and biology of DNA methyltransferases. Crit Rev Biochem Mol Biol 31, 361–380.[CrossRef]
    [Google Scholar]
  2. Akerley, B. J., Rubin, E. J., Novick, V. L., Amaya, K., Judson, N. & Mekalanos, J. J. ( 2002; ). A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci U S A 99, 966–971.[CrossRef]
    [Google Scholar]
  3. Barbosa, T. M. & Levy, S. B. ( 2002; ). Activation of the Escherichia coli nfnB gene by MarA through a highly divergent marbox in a class II promoter. Mol Microbiol 45, 191–202.[CrossRef]
    [Google Scholar]
  4. Barcak, G. J., Chandler, M. S., Redfield, R. J. & Tomb, J. F. ( 1991; ). Genetic systems in Haemophilus influenzae. Methods Enzymol 204, 321–342.
    [Google Scholar]
  5. Bayliss, C. D., van de Ven, T. & Moxon, E. R. ( 2002; ). Mutations in polI but not mutSLH destabilize Haemophilus influenzae tetranucleotide repeats. EMBO J 21, 1465–1476.[CrossRef]
    [Google Scholar]
  6. Bayliss, C. D., Sweetman, W. A. & Moxon, E. R. ( 2004; ). Mutations in Haemophilus influenzae mismatch repair genes increase mutation rates of dinucleotide repeat tract but not dinucleotide repat-driven pilin phase variation rates. J Bacteriol 186, 2928–2935.[CrossRef]
    [Google Scholar]
  7. Beattie, K. L. & Setlow, J. K. ( 1971; ). Transformation-defective strains of Haemophilus influenzae. Nat New Biol 231, 177–179.[CrossRef]
    [Google Scholar]
  8. Bestor, T. H. ( 2000; ). The DNA methyltransferases of mammals. Hum Mol Genet 9, 2395–2402.[CrossRef]
    [Google Scholar]
  9. Blyn, L. B., Braaten, B. A. & Low, D. A. ( 1990; ). Regulation of pap pilin phase variation by a mechanism involving differential dam methylation states. EMBO J 9, 4045–4054.
    [Google Scholar]
  10. Bryant, C. & DeLuca, M. ( 1991; ). Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem 266, 4119–4125.
    [Google Scholar]
  11. Bucci, C., Lavitola, A., Salvatore, P., Del Giudice, L., Massardo, D. R., Bruni, C. B. & Alifano, P. ( 1999; ). Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell 3, 435–445.[CrossRef]
    [Google Scholar]
  12. Bujnicki, J. M., Radlinska, M., Zaleski, P. & Piekarowicz, A. ( 2001; ). Cloning of the Haemophilus influenzae Dam methyltransferase and analysis of its relationship to the Dam methyltransferase encoded by the HP1 phage. Acta Biochim Pol 48, 969–983.
    [Google Scholar]
  13. Camacho, E. M. & Casadesus, J. ( 2002; ). Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol Microbiol 44, 1589–1598.[CrossRef]
    [Google Scholar]
  14. Cantalupo, G., Bucci, C., Salvatore, P., Pagliarulo, C., Roberti, V., Lavitola, A., Bruni, C. B. & Alifano, P. ( 2001; ). Evolution and function of neisserial dam-replacing gene. FEBS Lett 495, 178–183.[CrossRef]
    [Google Scholar]
  15. Cheng, X. & Roberts, J. R. ( 2001; ). Ado-Met dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res 29, 3784–3795.[CrossRef]
    [Google Scholar]
  16. Colussi, C., Parlanti, E., Degan, P. & 7 other authors ( 2002; ). The mamalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool. Curr Biol 12, 912–918.[CrossRef]
    [Google Scholar]
  17. Deschavanne, P. & Radman, M. ( 1991; ). Counterselection of GATC sequences in enterobacteriophages by the components of the methyl-directed mismatch repair system. J Mol Evol 33, 125–132.[CrossRef]
    [Google Scholar]
  18. Dougherty, B. A. & Smith, H. O. ( 1999; ). Identification of Haemophilus influenzae Rd transformation genes using cassette mutagenesis. Microbiology 145, 401–409.[CrossRef]
    [Google Scholar]
  19. Drake, J. W. ( 1991; ). A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88, 2831–2838.
    [Google Scholar]
  20. Fleischmann, R. D., Adams, M. D., White, O. & 37 other authors ( 1995; ). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.[CrossRef]
    [Google Scholar]
  21. Friedberg, E. C. ( 2003; ). DNA damage and repair. Nature 421, 436–440.[CrossRef]
    [Google Scholar]
  22. Glover, S. W. & Piekarowicz, A. ( 1972; ). Host specificity of DNA in Haemophilus influenzae: restriction and modification in strain Rd. Biochem Biophys Res Commun 46, 1610–1617.[CrossRef]
    [Google Scholar]
  23. Henderson, P. T., Delaney, J. C., Gu, F., Tannenbaum, S. R. & Essigmann, J. M. ( 2002; ). Oxidation of 7,8-dihydro-8-oxoguanine affords lesions that are potent sources of replication errors in vivo. Biochemistry 41, 914–921.[CrossRef]
    [Google Scholar]
  24. Herman, G. E. & Modrich, P. ( 1981; ). Escherichia coli K-12 clones that overproduce dam methylase are hypermutable. J Bacteriol 145, 644–646.
    [Google Scholar]
  25. Hsieh, P. ( 2001; ). Molecular mechanisms of DNA mismatch repair. Mutat Res 486, 71–87.[CrossRef]
    [Google Scholar]
  26. Imlay, J. A., Chin, S. M. & Linn, S. ( 1988; ). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240, 640–642.[CrossRef]
    [Google Scholar]
  27. Jablonska, E. & Piekarowicz, A. ( 1976; ). Bacteriophage N3 of Haemophilus influenzae. II. Infection of transformable cells by bacteriophage DNA. Acta Microbiol Pol 25, 175–186.
    [Google Scholar]
  28. Julio, S. M., Heithoff, D. M., Provenzano, D., Klose, K. E., Sinsheimer, R. L., Low, D. A. & Mahan, M. J. ( 2001; ). DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae. Infect Immun 69, 7610–7615.[CrossRef]
    [Google Scholar]
  29. Kimball, R. F., Boling, M. E. & Perdue, S. W. ( 1977; ). Evidence that UV-inducible error-prone repair is absent in Haemophilus influenzae Rd, with a discussion of the relation to error-prone repair of alkylating-agent damage. Mutat Res 44, 183–196.[CrossRef]
    [Google Scholar]
  30. Kossykh, V. G. & Lloyd, R. S. ( 2004; ). A DNA adenine methyltransferase of Escherichia coli that is cell cycle regulated and essential for viability. J Bacteriol 186, 2061–2067.[CrossRef]
    [Google Scholar]
  31. Lacks, S. & Greenberg, B. ( 1977; ). Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. J Mol Biol 114, 153–168.[CrossRef]
    [Google Scholar]
  32. Lobner-Olesen, A., Marinus, M. G. & Hansen, G. G. ( 2003; ). Role of Seq and Dam in Escherichia coli gene expression: a global/microarray analysis. Proc Natl Acad Sci U S A 100, 4672–4677.[CrossRef]
    [Google Scholar]
  33. Low, D. A., Weyand, N. J. & Mahan, M. J. ( 2001; ). Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun 69, 7197–7204.[CrossRef]
    [Google Scholar]
  34. Ma, D., Cook, D. N., Alberti, M., Pon, N. G., Nikaido, H. & Hearst, J. E. ( 1993; ). Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 175, 6299–6313.
    [Google Scholar]
  35. Marinus, M. G. ( 1996; ). Methylation of DNA. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 123–145. Edited by F. Neidhardt and others. Washington, DC: American Society for Microbiology.
  36. Mayer, M. P. ( 1995; ). A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163, 41–46.[CrossRef]
    [Google Scholar]
  37. Messer, W. U., Bellekas, U. & Lothar, H. ( 1985; ). Effect of dam methylation on the activity of the E. coli replication origin oriC. EMBO J 4, 1327–1332.
    [Google Scholar]
  38. Modrich, P. ( 1987; ). DNA mismatch correction. Annu Rev Biochem 56, 435–466.[CrossRef]
    [Google Scholar]
  39. Notani, N. K. & Setlow, J. K. ( 1974; ). Mechanism of bacterial transformation and transfection. Prog Nucleic Acid Res Mol Biol 14, 39–100.
    [Google Scholar]
  40. Oshima, T., Wada, C., Kawagoe, Y., Ara, T., Maeda, M., Masuda, Y., Hiraga, S. & Mori, H. ( 2002; ). Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol Microbiol 45, 673–695.[CrossRef]
    [Google Scholar]
  41. Ostendorf, T., Cherepanov, P., de Vries, J. & Wackernagel, W. ( 1999; ). Characterization of a dam mutant of Serratia marcescens and nucleotide sequence of the dam region. J Bacteriol 181, 3880–3885.
    [Google Scholar]
  42. Palmer, B. R. & Marinus, M. G. ( 1994; ). The dam and dcm strains of Escherichia coli – a review. Gene 143, 1–12.[CrossRef]
    [Google Scholar]
  43. Reisenauer, A., Kahng, L. S., McCollum, S. & Shapiro, L. ( 1999; ). Bacterial DNA methylation: a cell cycle regulator. J Bacteriol 181, 5135–5139.
    [Google Scholar]
  44. Roberts, R. J. & Macelis, D. ( 2000; ). REBASE - restriction enzymes and methylases. Nucleic Acids Res 28, 306–307.[CrossRef]
    [Google Scholar]
  45. Roberts, D., Hoopes, B. C., McClure, W. R. & Kleckner, N. ( 1985; ). IS10 transposition is regulated by DNA adenine methylation. Cell 43, 117–130.[CrossRef]
    [Google Scholar]
  46. Russell, D. W. & Zinder, N. D. ( 1987; ). Hemimethylation prevents DNA replication in E. coli. Cell 50, 1071–1079.[CrossRef]
    [Google Scholar]
  47. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  48. Sanchez, L., Pan, W., Vinas, M. & Nikaido, H. ( 1997; ). The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J Bacteriol 179, 6855–6857.
    [Google Scholar]
  49. Sisson, G., Jeong, J.-Y., Goodwin, A., Bryden, L., Rossler, N., Lim-Morrison, S., Raudonikine, A., Berg, D. E. & Hoffman, P. S. ( 2000; ). Metronidazole activation is mutagenic and causes DNA fragmentation in Helicobacter pylori and Escherichia coli containing cloned H. pylori rdxA+ (nitroreductase) gene. J Bacteriol 182, 5091–5096.[CrossRef]
    [Google Scholar]
  50. Sisson, G., Goodwin, A., Raudonikiene, A., Hughes, N. J., Mukhopadhyay, A. K., Berg, D. E. & Hoffman, P. S. ( 2002; ). Enzymes associated with reductive activation and action of nitrozoxanide, nitrofurans, and metronidazole in Helicobacter pylori. Antimicrob Agents Chemother 46, 2116–2123.[CrossRef]
    [Google Scholar]
  51. Smith, P. K., Krohn, R. I., Hermanson, G. T. & 7 other authors ( 1987; ). Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76–85.
    [Google Scholar]
  52. Stambuk, S. & Radman, M. ( 1998; ). Mechanism and control of interspecies recombination in Escherichia coli. I. Mismatch repair, methylation, recombination and replication functions. Genetics 150, 533–542.
    [Google Scholar]
  53. Torreblanca, J. & Casadesus, J. ( 1996; ). DNA adenine methylase mutants of Salmonella typhimurium and a novel dam-regulated locus. Genetics 144, 15–26.
    [Google Scholar]
  54. Whiteway, J., Koziarz, P., Veall, J., Sandhu, N., Kumar, P., Hoecher, B. & Lambert, I. B. ( 1998; ). Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J Bacteriol 180, 5529–5539.
    [Google Scholar]
  55. Williams, P. M., Bannister, L. A. & Redfield, R. J. ( 1994; ). The Haemophilus influenzae sxy-1 mutation is in a newly identified gene essential for competence. J Bacteriol 176, 6789–6794.
    [Google Scholar]
  56. Wyrzykowski, J. & Volkert, M. R. ( 2003; ). The Escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions. J Bacteriol 185, 1701–1704.[CrossRef]
    [Google Scholar]
  57. Yang, W. ( 2000; ). Structure and function of mismatch repair proteins. Mutat Res 460, 245–260.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27225-0
Loading
/content/journal/micro/10.1099/mic.0.27225-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error