1887

Abstract

In the mycotoxigenic oilseed pathogens and and the model filamentous fungus , unsaturated fatty acids and their derivatives act as important developmental signals that affect asexual conidiospore, sexual ascospore and/or sclerotial development. To dissect the relationship between lipid metabolism and fungal development, an Δ-desaturase mutant that was unable to convert oleic acid to linoleic acid and was thus impaired in polyunsaturated fatty acid biosynthesis was generated. The Δ-desaturase mutant demonstrates delayed spore germination, a twofold reduction in growth, a reduced level of conidiation and complete loss of sclerotial development, compared to the wild-type. Host colonization is impaired, as reflected by a decrease in conidial production on live peanut and corn seed by the mutant compared to the wild-type. Similarly, the previously isolated Δ-desaturase mutant has reduced colonization capabilities compared to the wild-type. Therefore, desaturation mutants display a key requisite that affords a genetic solution to oilseed crop contamination by mycotoxigenic species: a reduction in the production of conidia, the infectious particle of the pathogenic aspergilli.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27207-0
2004-09-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/9/mic1502881.html?itemId=/content/journal/micro/10.1099/mic.0.27207-0&mimeType=html&fmt=ahah

References

  1. Andersen P. C., Gorbet D. W. 2002; Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. J Agric Food Chem50:1298–1305[CrossRef]
    [Google Scholar]
  2. Bewley J. D., Black M. 1985; Seeds: Physiology of Development and Germinationp– 16 New York: Plenum;
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Med Sci37:911–917
    [Google Scholar]
  4. Budinska O., Kubin V., Franek J., Julak J., Panos J. 1981; A lipopolysaccharide from Aspergillus flavus conidia. Folia Microbiol (Praha)26:212–216[CrossRef]
    [Google Scholar]
  5. Burow G. B., Nesbitt T. C., Dunlap J., Keller N. P. 1997; Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis. Mol Plant Microbe Interact10:380–387[CrossRef]
    [Google Scholar]
  6. Burow G. B., Gardner H. W., Keller N. P. 2000; A peanut seed lipoxygenase responsive to Aspergillus colonization. Plant Mol Biol42:689–701[CrossRef]
    [Google Scholar]
  7. Calvo A. M., Hinze L. L., Gardner H. W., Keller N. P. 1999; Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp. Appl Environ Microbiol65:3668–3673
    [Google Scholar]
  8. Calvo A. M., Gardner H. W., Keller N. P. 2001; Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J Biol Chem276:25766–25774[CrossRef]
    [Google Scholar]
  9. Chang P.-K., Wilson R. A., Keller N. P., Cleveland T. E. 2004; Deletion of the Δ12-oleic acid desaturase gene of a non-aflatoxigenic Aspergillus parasiticus field isolate affects conidiation and sclerotial development. J Appl Microbiol in press
    [Google Scholar]
  10. Chattopadhyay P., Banerjee S. K., Sen K., Chakrabarti P. 1987; Lipid profiles of conidia of Aspergillus niger and a fatty acid auxotroph. Can J Microbiol33:1116–1120[CrossRef]
    [Google Scholar]
  11. Evans J. L., Moclock M. A., Gealt M. A. 1986; The fatty acid composition of the conidia and mycelia of the fungus Aspergillus nidulans. Can J Microbiol32:179–181[CrossRef]
    [Google Scholar]
  12. Geiser D. M., Timberlake W. E., Arnold M. L. 1996; Loss of meiosis in Aspergillus. Mol Biol Evol13:809–817[CrossRef]
    [Google Scholar]
  13. Gorbet D. W., Knauft D. A. 2000; Registration of ‘SunOleic 97R’ peanut. Crop Sci40:1190–1191[CrossRef]
    [Google Scholar]
  14. Hamblin A. M., White D. G. 2000; Inheritance of resistance to Aspergillus ear rot and aflatoxin production of corn from Tex6. Phytopathology90:292–296[CrossRef]
    [Google Scholar]
  15. Holbrook C. C., Wilson D. M., Matheron M. E., Hunter J. E., Knauft D. A., Gorbet D. W. 2000; Aspergillus colonization and aflatoxin contamination in peanut genotypes with reduced linoleic acid composition. Plant Dis84:148–150[CrossRef]
    [Google Scholar]
  16. Jung S., Powell G., Moore K., Abbott A. 2000; The high oleate trait in the cultivated peanut [Arachis hypogaea L]. II. Molecular basis and genetics of the trait. Mol Gen Genet263:806–811[CrossRef]
    [Google Scholar]
  17. Khunyoshyeng S., Cheevadhanarak S., Rachdawong S., Tanticharoen M. 2002; Differential expression of desaturases and changes in fatty acid composition during sporangiospore germination and development in Mucor rouxii. Fungal Genet Biol37:13–21[CrossRef]
    [Google Scholar]
  18. Knauft D. A., Moore K. M., Gorbet D. W. 1993; Further studies on the inheritance of fatty acid composition in peanut. Peanut Sci20:74–76[CrossRef]
    [Google Scholar]
  19. Massaro M., Carluccio M. A., De Caterina R. 1999; Direct vascular antiatherogenic effects of oleic acid: a clue to the cardioprotective effects of the Mediterranean diet. Cardiologia44:507–513
    [Google Scholar]
  20. Mazur P., Meyers H. V., Nakanishi K., El-Zayat A. A. E., Champe S. P. 1990; Structural elucidation of sporogenic fatty acid metabolites from Aspergillus nidulans. Tetrahedron Lett31:3837–3840[CrossRef]
    [Google Scholar]
  21. Mazur P., Nakanishi K., El-Zayat A. A. E., Champe S. P. 1991; Structure and synthesis of sporogenic psi factors from Aspergillus nidulans. J Chem Soc Chem Commun20:1486–1487
    [Google Scholar]
  22. Norden A. J., Gorbet D. W., Knauft D. A. 1985; Registration of ‘Sunrunner’ peanut. Crop Sci25:1126
    [Google Scholar]
  23. Payne G. A. 1992; Aflatoxin in maize. Crit Rev Plant Sci10:423–440[CrossRef]
    [Google Scholar]
  24. Rambo G. W., Bean G. A. 1974; Sterols and fatty acids of aflatoxin and non-aflatoxin producing isolates of Aspergillus. Phytochemistry13:195–198[CrossRef]
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Singh J., Sood M. G. 1973; Component fatty acids of Aspergillus terreus fat. J Am Oil Chem Soc50:485–486[CrossRef]
    [Google Scholar]
  27. Skory C. D., Chang P.-K., Cary J., Linz J. E. 1992; Isolation and characterization of a gene from Aspergillus parasiticus associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis. Appl Environ Microbiol58:3527–3537
    [Google Scholar]
  28. Sood M. G., Singh J. 1973; The component fatty acids of Aspergillus ochraceus fat. J Sci Food Agric24:1171–1174[CrossRef]
    [Google Scholar]
  29. Trail F., Mahanti N., Rarick M., Mehigh R., Liang S.-H., Zhou R., Linz J. E. 1995; Physical and transcriptional map of an aflatoxin gene cluster in Aspergillus parasiticus and functional disruption of a gene involved early in the aflatoxin pathway. Appl Environ Microbiol61:2665–2673
    [Google Scholar]
  30. Tsitsigiannis D. I., Zarnowski R., Keller N. P. 2004; The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem279:11344–11353[CrossRef]
    [Google Scholar]
  31. Wilson R. A., Gardner H. W., Keller N. P. 2001; Cultivar-dependent expression of a maize lipoxygenase responsive to seed infesting fungi. Mol Plant Microbe Interact14:980–987[CrossRef]
    [Google Scholar]
  32. Wilson R. A., Chang P.-K., Dobrzyn A., Ntambi J. M., Zarnowski R., Keller N. P. 2004; Two Δ9-stearic acid desaturases are required for Aspergillus nidulans growth and development. Fungal Genet Biol41:501–509[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27207-0
Loading
/content/journal/micro/10.1099/mic.0.27207-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error