1887

Abstract

The synthesis of the compatible solute ectoine, mediated by the gene products, is the main mechanism used by the halophilic bacterium to cope with osmotic stress. Evidence was found that this process is regulated at the transcriptional level. S1 protection analyses performed with RNA extracted from cells grown in minimal medium at low (0·75 M NaCl) or high (2·5 M NaCl) osmolarity suggested the existence of four promoters upstream of . Two of these ( and ) might be recognized by the main vegetative sigma factor , and one () might be dependent on the general stress sigma factor . The S1 protection assays suggest that and may be osmoregulated promoters. In addition, an internal promoter showing sequences homologous to promoters dependent on the heat-shock sigma factor was found upstream of . Transcription from in followed a pattern typical of -dependent promoters, and was reduced by 50 % in an background. These data strongly suggest the involvement of the general stress sigma factor in transcription in . Expression of and trancriptional fusions was very high at low salinity, suggesting that may be a partially constitutive system. Both transcriptional fusions were induced during continuous growth at high temperature and their expression was reduced in cells grown in the presence of osmoprotectants (ectoine or glycine betaine) or the DNA gyrase inhibitor nalidixic acid. Moreover, expression was negatively modulated in cells grown with an excess of iron (FeCl). Measurement of ectoine levels in the presence of glycine betaine at different NaCl concentrations suggests that an additional post-transcriptional control may occur as well.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27122-0
2004-09-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/9/mic1503051.html?itemId=/content/journal/micro/10.1099/mic.0.27122-0&mimeType=html&fmt=ahah

References

  1. Antón J., Roselló-Mora R., Rodríguez-Valera F., Amann R. 2000; Extremely halophiic bacteria in crystallizer ponds fom solar salterns. Appl Environ Microbiol66:3052–3057[CrossRef]
    [Google Scholar]
  2. Arahal D. R., García M. T., Vargas C., Cánovas D., Nieto J. J., Ventosa A. 2001; Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol51:1457–1462
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. R., Struhl K. 1989; Current Protocols in Molecular Biology New York: Greene Publishing Associates, John Wiley;
    [Google Scholar]
  4. Bestvater T., Galinski E. A. 2002; Investigation into a stress-inducible promoter region from Marinococcus halophilus using green fluorescent protein. Extremophiles6:15–20[CrossRef]
    [Google Scholar]
  5. Bremer E., Krämer R. 2000; Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. In Bacterial Stress Responses pp.79–97 Edited by Storz G., Hengge-Aronis R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Cánovas D., Vargas C., Csonka L. N., Ventosa A., Nieto J. J. 1996; Osmoprotectants in Halomonas elongata: high-affinity glycine betaine transport system and choline-glycine betaine pathway. J Bacteriol178:7221–7226
    [Google Scholar]
  7. Cánovas D., Vargas C., Iglesias-Guerra F., Csonka L. N., Rhodes D., Ventosa A., Nieto J. J. 1997; Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes. J Biol Chem272:25794–25801[CrossRef]
    [Google Scholar]
  8. Cánovas D., Vargas C., Calderón M. I., Ventosa A., Nieto J. J. 1998a; Characterization of the genes for the biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halomonas elongata DSM 3043. Syst Appl Microbiol21:487–497[CrossRef]
    [Google Scholar]
  9. Cánovas D., Vargas C., Csonka L. N., Ventosa A., Nieto J. J. 1998b; Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl Environ Microbiol64:4095–4097
    [Google Scholar]
  10. Cánovas D., Borges N., Vargas C., Ventosa A., Nieto J. J., Santos H. 1999; Role of N-γ-acetyldiaminobutyrate as an enzyme stabilizer and an intermediate in the biosynthesis of hydroxyectoine. Appl Environ Microbiol65:3774–3779
    [Google Scholar]
  11. Cánovas D., Vargas C., Kneip S., Morón M. J., Ventosa A., Bremer E., Nieto J. J. 2000; Genes for the syntesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043. Microbiology146:455–463
    [Google Scholar]
  12. Cánovas D., Fletcher S. A., Hayashi M., Csonka L. N. 2001; Role of trehalose in growth at high temperature of Salmonella enterica serovar typhimurium. J Bacteriol183:3365–3371[CrossRef]
    [Google Scholar]
  13. Casabadan M. J. 1976; Transposon and fusion of lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol104:541–555[CrossRef]
    [Google Scholar]
  14. Corona-Izquierdo F. P., Membrillo-Hernández J. 2002; A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiol Lett211:105–110[CrossRef]
    [Google Scholar]
  15. Csonka L. N. 1982; A third l-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength. J Bacteriol151:1433–1443
    [Google Scholar]
  16. Csonka L. N., Epstein W. 1996; Osmoregulation. In Escherichia coli and Salmonella: Cellular and Molecular Biology vol 1 pp.1210–1223 Edited by Neidhardt F. C..others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Da Costa M. S., Santos H., Galinski E. A. 1998; An overview of the role and diversity of compatible solutes in bacteria and archaea. In Advances in Biochemical Engineering/Biotechnology vol 61 pp.117–153 Edited by Scheper T.. Berlin: Springer;
    [Google Scholar]
  18. Eshoo M. W. 1988; lac fusion analysis of the bet genes of Escherichia coli: regulation by osmolarity, temperature, oxygen, choline, and glycine betaine. J Bacteriol170:5208–5215
    [Google Scholar]
  19. Galinski E. A. 1995; Osmoadaptation in bacteria. Adv Microb Physiology37:272–328
    [Google Scholar]
  20. Galinski E. A., Trüper H. G. 1994; Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev15:95–108[CrossRef]
    [Google Scholar]
  21. Galinski E. A., Pfeiffer H. P., Trüper H. G. 1985; 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem149:135–139[CrossRef]
    [Google Scholar]
  22. Göller K., Ofer A., Galinski E. A. 1998; Construction and characterization of an NaCl-sensitive mutant of Halomonas elongata impaired in ectoine biosynthesis. FEMS Microbiol Lett161:293–300[CrossRef]
    [Google Scholar]
  23. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580[CrossRef]
    [Google Scholar]
  24. Hengge-Aronis R. 1999; Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr Opin Microbiol2:148–152[CrossRef]
    [Google Scholar]
  25. Hengge-Aronis R. 2000; The general stress response in Escherichia coli. In Bacterial Stress Responses pp.161–178 Edited by Storz G., Hengge-Aronis R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Hengge-Aronis R. 2002a; Stationary phase gene regulation: what makes an Escherichia coli promoter σS-selective?. Curr Opin Microbiol5:591–595[CrossRef]
    [Google Scholar]
  27. Hengge-Aronis R. 2002b; Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev66:373–395[CrossRef]
    [Google Scholar]
  28. Hengge-Aronis R., Klein W., Lange R., Rimmele M., Boss W. 1991; Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary phase thermotolerance inEscherichia coli. J Bacteriol173:7918–7924
    [Google Scholar]
  29. Hiraishi A., Ueda Y. 1994; Intragenic structure of the genus Rhodobacter: transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Int J Syst Bacteriol44:15–23[CrossRef]
    [Google Scholar]
  30. Kessler B., de Lorenzo V., Timmis K. N. 1992; A general system to integrate lacZ fusion into the chromosome of gram negative bacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol Gen Genet233:293–301[CrossRef]
    [Google Scholar]
  31. Kraegeloh A., Kunte H. J. 2002; Novel insights into the role of potassium for osmoregulation in Halomonas elongata. Extremophiles6:453–462[CrossRef]
    [Google Scholar]
  32. Kuhlmann A. U., Bremer E. 2002; Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. J Bacteriol68:772–783
    [Google Scholar]
  33. Lamark T., Kaasen I., Eshoo M. W., Falkenberg P., Mc-Dougall J., Strøm A. R. 1991; DNA sequence analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol5:1049–1064[CrossRef]
    [Google Scholar]
  34. Lippert K., Galinski E. A. 1992; Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol37:61–65
    [Google Scholar]
  35. Louis P., Galinski E. A. 1997; Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology143:1141–1149[CrossRef]
    [Google Scholar]
  36. Miller J. H. 1992; A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Monsalve M., Mencía M., Rojo F., Salas M. 1995; Transcriptional regulation in bacteriophague π29: expression of the viral promoters throughout the infection cycle. Virology207:23–31[CrossRef]
    [Google Scholar]
  38. Nieto J. J., Fernández-Castillo R., Márquez M. C., Ventosa A., Quesada E., Ruiz-Berraquero F. 1989; Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol52:2385–2390
    [Google Scholar]
  39. Nissen H., Dundas I. D. 1984; Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern. Arch Microbiol138:251–256[CrossRef]
    [Google Scholar]
  40. O'Connor K., Csonka L. N. 2003; The high salt requirement of the moderate halophile Chromohalobacter salexigens DSM 3043 can be met not only by NaCl but by other ions. J Bacteriol69:6334–6336
    [Google Scholar]
  41. Ono H., Sawada K., Khunajakr N., Tao T., Yamamoto M., Hiramoto M., Shinmyo A., Takano M., Murooka Y. 1999; Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J Bacteriol181:91–99
    [Google Scholar]
  42. Oren A. 1999; Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev63:334–348
    [Google Scholar]
  43. Peters P., Galinski E. A., Trüper H. G. 1990; The biosynthesis of ectoine. FEMS Microbiol Lett71:157–162[CrossRef]
    [Google Scholar]
  44. Poolman B., Glaasker E. 1998; Regulation of compatible solute accumulation in bacteria. Mol Microbiol29:397–407[CrossRef]
    [Google Scholar]
  45. Sambrook J., Russell D. W. 2001; Molecular Cloning, a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Severin J., Wohlfarth A., Galinski E. A. 1992; The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. J Gen Microbiol138:1629–1638[CrossRef]
    [Google Scholar]
  47. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J. 1987; Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol9:27–39[CrossRef]
    [Google Scholar]
  48. Spiegelhalter F., Bremer E. 1998; Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the sigma A- and sigma B-dependent stress responsive promoters. Mol Microbiol29:285–296[CrossRef]
    [Google Scholar]
  49. Vargas C., Coronado M. J., Ventosa A., Nieto J. J. 1997; Host range, stability, and compatibility of broad host-range-plasmids and a shuttle vector in moderately halophilic bacteria. Evidence of intragenic and intergenic conjugation in moderate halophiles. Syst Appl Microbiol20:173–181[CrossRef]
    [Google Scholar]
  50. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev62:504–544
    [Google Scholar]
  51. Vicente M., Chater K. F, de Lorenzo V. 1999; Bacterial transcription factors involved in global regulation. Mol Microbiol33:8–17[CrossRef]
    [Google Scholar]
  52. Vreeland R. H., Martin E. L. 1980; Growth characteristics, effects of temperature, and ion specificity of the halotolerant bacterium Halomonas elongata. Can J Microbiol26:746–752[CrossRef]
    [Google Scholar]
  53. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol30:485–495[CrossRef]
    [Google Scholar]
  54. Wang A.-Y., Cronan J. E. 1994; The growth phase-dependent synthesis of cyclopropane fatty acids in Escherichia coli is the result of an RpoS(KatF)-dependent promoter plus enzyme instability. Mol Microbiol11:1009–1017[CrossRef]
    [Google Scholar]
  55. Wohlfarth A., Severin J., Galinski E. A. 1990; The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. J Gen Microbiol136:705–712[CrossRef]
    [Google Scholar]
  56. Wood J. M., Bremer E., Csonka L. N., Krämer R., Poolman B., van der Heide T., Smith L. T. 2001; Osmosensing and osmoregulatory compatible solutes accumulation by bacteria. Comp Biochem Physiol130:437–460[CrossRef]
    [Google Scholar]
  57. Wösten M. M. S. M. 1998; Eubacterial sigma-factors. FEMS Microbiol Rev22:127–150[CrossRef]
    [Google Scholar]
  58. Xu J. M., Johnson C. 1997; Activation of RpoS-dependent proP P2 transcription by the Fis protein in vitro. J Mol Biol270:346–359[CrossRef]
    [Google Scholar]
  59. Yim H. H., Brems R. L., Villarejo M. 1994; Molecular characterization of the promoter of osmY, an rpoS-dependent gene. J Bacteriol176:100–107
    [Google Scholar]
  60. Yura T., Kanemori M., Morita M. T. 2000; The heat shock response: regulation and function. In Bacterial Stress Responses pp.3–18 Edited by Storz G., Hengge-Aronis R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27122-0
Loading
/content/journal/micro/10.1099/mic.0.27122-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error