1887

Abstract

The genes encoding the DNA methyltransferases M.NmeDI and M.NmeAI from associated with the genes encoding putative Vsr endonucleases were overexpressed in . The enzymes were purified to apparent homogeneity on Ni-NTA agarose columns, yielding proteins of 49±1 kDa and 39·6±1 kDa, respectively, under denaturing conditions. M.NmeDI recognizes the degenerate sequence 5′-RCCGGB-3′. It methylates the first 5′ cytosine residue on both strands within the core sequence CCGG. The enzyme shows higher affinity with the hemimethylated degenerate sequence than with the unmethylated degenerate sequence. Comparison of the amino acid sequence of the target-recognizing domain of M.NmeDI with the closest neighbours recognizing the sequence 5′-RCCGGY-3′ showed the presence of the homologous domain and an additional domain that may be responsible for recognizing the degenerate sequence. M.NmeAI recognizes the sequence 5′-CCGG-3′ and methylates the second 5′ cytosine residue on both DNA strands. In strain FA1090 the homologues of these ORFs are truncated due to a variety of mutations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27011-0
2004-06-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501713.html?itemId=/content/journal/micro/10.1099/mic.0.27011-0&mimeType=html&fmt=ahah

References

  1. Balganesh T. S., Reiners L., Lauster R., Noyer-Weidner M., Wilke K., Trautner T. A.. 1987; Construction and use of chimeric SPR/phi 3T DNA methyltransferases in the definition of sequence recognizing enzyme regions. EMBO J11:3543–3549
    [Google Scholar]
  2. Bandaru B., Gopal J., Bhagwat A. S.. 1996; Overproduction of DNA cytosine methyltransferases causes methylation and C>T mutations at non-canonical sites. J Biol Chem271:7851–7859[CrossRef]
    [Google Scholar]
  3. Beck C., Cranz S., Solmaz M., Roth M., Jeltsch A.. 2001; How does a DNA interacting enzyme change its specificity during molecular evolution? A site-directed mutagenesis study at the DNA binding site of the DNA-(adenine-N6) methyltransferase EcoRV. Biochemistry40:10956–10965[CrossRef]
    [Google Scholar]
  4. Bhagwat A. S., Lieb M.. 2002; Cooperation and competition in mismatch repair: very short-patch repair and methyl-directed mismatch repair in Escherichia coli. Mol Microbiol44:1421–1426[CrossRef]
    [Google Scholar]
  5. Cheng X., Kumar S., Posfai J., Pflugrath J. W., Roberts R. J.. 1993; Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-methionine. Cell74:299–307[CrossRef]
    [Google Scholar]
  6. Claus H., Friedrich A., Frosch M., Vogel U.. 2000; Differential distribution of novel restriction-modification systems in clonal lineages of Neisseria meningitidis. J Bacteriol182:1296–1303[CrossRef]
    [Google Scholar]
  7. Cohen H. M., Tawfik D. S., Griffiths A. D.. 2002; Promiscuous methylation of non-canonical DNA sites by HaeIII methyltransferase. Nucleic Acids Res30:3850–3855
    [Google Scholar]
  8. Dryden D. T. F.. 1999; Bacterial DNA methyltransferases. In S-Adenosylmethionine-dependent Methyltransferases pp.283–340 Edited by Cheng X., Blumenthal R. M.. Singapore: World Scientific;
  9. Friedrich T., Fatemi M., Gowhar H., Leismann O., Jeltsch A.. 2000; Specificity of DNA binding and methylation by the M.FokI DNA methyltransferase. Biochim Biophys Acta 1480;145–159[CrossRef]
    [Google Scholar]
  10. Hennecke F., Kolmar H., Fritz H. J., Bründl K.. 1991; The vsr gene product of Escherichia coli K-12 strain is a strand- and sequence-specific DNA mismatch endonuclease. Nature353:776–778[CrossRef]
    [Google Scholar]
  11. Klimasauskas S., Nelson J. L., Roberts R. J.. 1991; The sequence specificity domain of cytosine-C5 methylases. Nucleic Acids Res19:6183–6190[CrossRef]
    [Google Scholar]
  12. Kumar S., Cheng X., Klimasauskas S., Mi S., Posfai J., Roberts R. J., Wilson G. G.. 1994; The DNA (cytosine-5) methyltransferases. Nucleic Acids Res22:1–10[CrossRef]
    [Google Scholar]
  13. Laging M., Lindner E., Fritz H. J., Kramer W.. 2003; Repair of hydrolytic DNA deamination damage in thermophilic bacteria: cloning and characterization of a Vsr endonuclease homologue from Bacillus stearothermophilus. Nucleic Acids Res31:1913–1920[CrossRef]
    [Google Scholar]
  14. Landry D., Barsomian J. M., Feehery G. R., Wilson G. G.. 1992; Characterization of type II DNA-methyltransferase. Methods Enzymol216:244–254
    [Google Scholar]
  15. Lauster R.. 1989; Evolution of type II DNA methyltransferases. A gene duplication model. J Mol Biol206:313–321[CrossRef]
    [Google Scholar]
  16. Lieb M., Bhagwat S. A.. 1996; Very short patch repair: reducing the cost of cytosine methylation. Mol Microbiol20:467–473[CrossRef]
    [Google Scholar]
  17. Matveyev A. V., Young K. T., Meng A., Elhai J.. 2001; DNA methyltransferses of the cyanobacterium Anabaena PCC 7120. Nucleic Acids Res29:1491–1506[CrossRef]
    [Google Scholar]
  18. Mayer M. P.. 1995; A new set of useful cloning and expression vectors derived from pBlueScript. Gene163:41–46[CrossRef]
    [Google Scholar]
  19. Posfai J., Bhagwat A. S., Posfai G., Roberts R. J.. 1989; Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res17:2421–2435[CrossRef]
    [Google Scholar]
  20. Renbaum P., Razin A.. 1995; Interaction of M.SssI and M.HhaI with single-base mismatched oligodeoxynucleotide duplexes. Gene157:177–179[CrossRef]
    [Google Scholar]
  21. Roberts R. J., Macelis D.. 2002; REBASE: restriction enzymes and methyltransferases. Nucleic Acids Res31:418–420 (see alsohttp://rebase.neb.com/rebase
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  23. Trautner T. A., Pawlek B., Behrens B., Willert J.. 1996; Exact size and organization of DNA target-recognizing domains of multispecific DNA-(cytosine-C5) methyltransferases. EMBO J15:1434–1442
    [Google Scholar]
  24. Walter J., Trautner T. A., Noyer-Weidner M.. 1992; High plasticity of multispecific DNA methyltransferases in the region carrying DNA target recognizing enzyme modules. EMBO J12:4445–4450
    [Google Scholar]
  25. Wilke K., Rauhut E., Noyer-Weidner M., Lauster R., Pawlek B., Behrens B., Trautner T. A.. 1988; Sequential order of target-recognizng domains in multispecific DNA-methyltransferases. EMBO J7:2601–2609
    [Google Scholar]
  26. Wilson G. G., Murray N. E.. 1991; Restriction and modification systems. Annu Rev Genet25:585–627[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27011-0
Loading
/content/journal/micro/10.1099/mic.0.27011-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error