1887

Abstract

The ability of to acquire iron from the hostile environment of the host is known to be necessary for virulence and appears to be achieved using a similar system to that described for . In , high-affinity iron uptake is dependent upon the acquisition of copper. The authors have previously identified a gene () that encodes a copper transporter. Deletion of this gene results in a mutant strain that grows predominantly as pseudohyphae and displays aberrant morphology in low-copper conditions. This paper demonstrates that invasive growth by is induced by low-copper conditions and that this is augmented in a -null strain. It also shows that deletion of results in defective iron uptake. In , genes that facilitate high-affinity copper uptake are controlled by a copper-sensing transactivator, Mac1p. The authors have now identified a gene () that encodes a copper-sensing transactivator. A -null mutant displays phenotypes similar to those of a -null mutant and has no detectable transcripts in low-copper conditions. It is proposed that high-affinity copper uptake by is necessary for reductive iron uptake and is transcriptionally controlled by Mac1p in a similar manner to that in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27004-0
2004-07-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502197.html?itemId=/content/journal/micro/10.1099/mic.0.27004-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Braun, B. R. & Johnson, A. D. ( 1997; ). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109.[CrossRef]
    [Google Scholar]
  3. Church, G. M. & Gilbert, W. ( 1984; ). Genomic sequencing. Proc Natl Acad Sci U S A 81, 1991–1995.[CrossRef]
    [Google Scholar]
  4. Crichton, R. R. & Pierre, J. L. ( 2001; ). Old iron, young copper: from Mars to Venus. Biometals 14, 99–112.[CrossRef]
    [Google Scholar]
  5. Dancis, A., Haile, D., Yuan, D. S. & Klausner, R. D. ( 1994a; ). The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem 269, 25660–25667.
    [Google Scholar]
  6. Dancis, A., Yuan, D. S., Haile, D., Askwith, C., Eide, D., Moehle, C., Kaplan, J. & Klausner, R. D. ( 1994b; ). Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76, 393–402.[CrossRef]
    [Google Scholar]
  7. Davis, D., Edwards, J. E., Jr, Mitchell, A. P. & Ibrahim, A. S. ( 2000a; ). Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68, 5953–5959.[CrossRef]
    [Google Scholar]
  8. Davis, D., Wilson, R. B. & Mitchell, A. P. ( 2000b; ). RIM101-dependent and -independent pathways govern pH responses in Candida albicans. Mol Cell Biol 20, 971–978.[CrossRef]
    [Google Scholar]
  9. Dix, D. R., Bridgham, J. T., Broderius, M. A., Byersdorfer, C. A. & Eide, D. J. ( 1994; ). The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem 269, 26092–26099.
    [Google Scholar]
  10. Eck, R., Hundt, S., Hartl, A., Roemer, E. & Kunkel, W. ( 1999; ). A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology 145, 2415–2422.
    [Google Scholar]
  11. Eide, D. J. ( 1998; ). The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18, 441–469.[CrossRef]
    [Google Scholar]
  12. Eide, D., Davis-Kaplan, S., Jordan, I., Sipe, D. & Kaplan, J. ( 1992; ). Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently. J Biol Chem 267, 20774–20781.
    [Google Scholar]
  13. Furst, P. & Hamer, D. ( 1989; ). Cooperative activation of a eukaryotic transcription factor: interaction between Cu(I) and yeast ACE1 protein. Proc Natl Acad Sci U S A 86, 5267–5271.[CrossRef]
    [Google Scholar]
  14. Gancedo, J. M. ( 2001; ). Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25, 107–123.[CrossRef]
    [Google Scholar]
  15. Garcia, S., Prado, M., Degano, R. & Dominguez, A. ( 2002; ). A copper-responsive transcription factor, CRF1, mediates copper and cadmium resistance in Yarrowia lipolytica. J Biol Chem 277, 37359–37368.[CrossRef]
    [Google Scholar]
  16. Gillum, A. M., Tsay, E. Y. H. & Kirsch, D. R. ( 1984; ). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae URA3 and E. coli pyrF mutations. Mol Gen Genet 198, 179–182.[CrossRef]
    [Google Scholar]
  17. Graden, J. A. & Winge, D. R. ( 1997; ). Copper-mediated repression of the activation domain in the yeast Mac1p transcription factor. Proc Natl Acad Sci U S A 94, 5550–5555.[CrossRef]
    [Google Scholar]
  18. Gross, C., Kelleher, M., Iyer, V. R., Brown, P. O. & Winge, D. R. ( 2000; ). Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem 275, 32310–32316.[CrossRef]
    [Google Scholar]
  19. Halliwell, B. & Gutteridge, J. M. C. ( 1999; ). Free Radicals in Biology and Medicine. Oxford: Oxford University Press.
  20. Hammacott, J. E., Williams, P. H. & Cashmore, A. M. ( 2000; ). Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant. Microbiology 146, 869–876.
    [Google Scholar]
  21. Hassett, R., Dix, D. R., Eide, D. J. & Kosman, D. J. ( 2000; ). The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem J 351, 477–484.[CrossRef]
    [Google Scholar]
  22. Heymann, P., Ernst, J. F. & Winkelmann, G. ( 1999; ). Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. Biometals 12, 301–306.[CrossRef]
    [Google Scholar]
  23. Hu, C. J., Bai, C., Zheng, X. D., Wang, Y. M. & Wang, Y. ( 2002; ). Characterization and functional analysis of the siderophore-iron transporter CaArn1p in Candida albicans. J Biol Chem 277, 30598–30605.[CrossRef]
    [Google Scholar]
  24. Ish-Horowicz, D. & Burke, J. F. ( 1981; ). Rapid and efficient cosmid cloning. Nucleic Acids Res 9, 2989–2998.[CrossRef]
    [Google Scholar]
  25. Jensen, L. T. & Winge, D. R. ( 1998; ). Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae. Embo J 17, 5400–5408.[CrossRef]
    [Google Scholar]
  26. Jensen, L. T., Posewitz, M. C., Srinivasan, C. & Winge, D. R. ( 1998; ). Mapping of the DNA binding domain of the copper-responsive transcription factor Mac1 from Saccharomyces cerevisiae. J Biol Chem 273, 23805–23811.[CrossRef]
    [Google Scholar]
  27. Jungmann, J., Reins, H. A., Lee, J., Romeo, A., Hassett, R., Kosman, D. & Jentsch, S. ( 1993; ). MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. Embo J 12, 5051–5056.
    [Google Scholar]
  28. Kampfenkel, K., Kushnir, S., Babiychuk, E., Inze, D. & Van Montagu, M. ( 1995; ). Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J Biol Chem 270, 28479–28486.[CrossRef]
    [Google Scholar]
  29. Keller, G., Gross, C., Kelleher, M. & Winge, D. R. ( 2000; ). Functional independence of the two cysteine-rich activation domains in the yeast Mac1 transcription factor. J Biol Chem 275, 29193–29199.[CrossRef]
    [Google Scholar]
  30. Knight, S. A., Labbe, S., Kwon, L. F., Kosman, D. J. & Thiele, D. J. ( 1996; ). A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev 10, 1917–1929.[CrossRef]
    [Google Scholar]
  31. Knight, S. A., Lesuisse, E., Stearman, R., Klausner, R. D. & Dancis, A. ( 2002; ). Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology 148, 29–40.
    [Google Scholar]
  32. Labbe, S., Zhu, Z. & Thiele, D. J. ( 1997; ). Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J Biol Chem 272, 15951–15958.[CrossRef]
    [Google Scholar]
  33. Labbe, S., Pena, M. M., Fernandes, A. R. & Thiele, D. J. ( 1999; ). A copper-sensing transcription factor regulates iron uptake genes in Schizosaccharomyces pombe. J Biol Chem 274, 36252–36260.[CrossRef]
    [Google Scholar]
  34. Lesuisse, E., Simon-Casteras, M. & Labbe, P. ( 1998; ). Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144, 3455–3462.[CrossRef]
    [Google Scholar]
  35. Lin, S. J., Pufahl, R. A., Dancis, A., O'Halloran, T. V. & Culotta, V. C. ( 1997; ). A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272, 9215–9220.[CrossRef]
    [Google Scholar]
  36. Linder, M. C. & Hazegh-Azam, M. ( 1996; ). Copper biochemistry and molecular biology. Am J Clin Nutr 63, 797S–811S.
    [Google Scholar]
  37. Mandel, M. & Higa, A. ( 1970; ). Calcium dependent bacteriophage DNA infection. J Mol Biol 53, 154.
    [Google Scholar]
  38. Manns, J. M., Mosser, D. M. & Buckley, H. R. ( 1994; ). Production of a hemolytic factor by Candida albicans. Infect Immun 62, 5154–5156.
    [Google Scholar]
  39. Marvin, M. E., Williams, P. H. & Cashmore, A. M. ( 2003; ). The Candida albicans CTR1 gene encodes a functional copper transporter. Microbiology 149, 1461–1474.[CrossRef]
    [Google Scholar]
  40. Moors, M. A., Stull, T. L., Blank, K. J., Buckley, H. R. & Mosser, D. M. ( 1992; ). A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med 175, 1643–1651.[CrossRef]
    [Google Scholar]
  41. Morrissey, J. A., Williams, P. H. & Cashmore, A. M. ( 1996; ). Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. Microbiology 142, 485–492.[CrossRef]
    [Google Scholar]
  42. Pufahl, R. A., Singer, C. P., Peariso, K. L., Lin, S. J., Schmidt, P. J., Fahrni, C. J., Culotta, V. C., Penner-Hahn, J. E. & O'Halloran, T. V. ( 1997; ). Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853–856.[CrossRef]
    [Google Scholar]
  43. Ramanan, N. & Wang, Y. ( 2000; ). A high-affinity iron permease essential for Candida albicans virulence. Science 288, 1062–1064.[CrossRef]
    [Google Scholar]
  44. Ratledge, C. & Dover, L. G. ( 2000; ). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54, 881–941.[CrossRef]
    [Google Scholar]
  45. Robertson, L. S., Causton, H. C., Young, R. A. & Fink, G. R. ( 2000; ). The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci U S A 97, 5984–5988.[CrossRef]
    [Google Scholar]
  46. Schmitt, M. E., Brown, T. A. & Trumpower, B. L. ( 1990; ). A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18, 3091–3092.[CrossRef]
    [Google Scholar]
  47. Sherman, F., Fink, G. R. & Hicks, J. B. ( 1986; ). Laboratory Course Manual for Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  48. Sonneborn, A., Bockmuhl, D. P., Gerads, M., Kurpanek, K., Sanglard, D. & Ernst, J. F. ( 2000; ). Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol Microbiol 35, 386–396.[CrossRef]
    [Google Scholar]
  49. Spizzo, T., Byersdorfer, C., Duesterhoeft, S. & Eide, D. ( 1997; ). The yeast FET5 gene encodes a FET3-related multicopper oxidase implicated in iron transport. Mol Gen Genet 256, 547–556.
    [Google Scholar]
  50. Szczypka, M. S. & Thiele, D. J. ( 1989; ). A cysteine-rich nuclear protein activates yeast metallothionein gene transcription. Mol Cell Biol 9, 421–429.
    [Google Scholar]
  51. Ward, C. G. & Bullen, J. J. ( 1999; ). Clinical and physiological aspects. In Iron and Infection: Molecular, Physiological and Clinical Aspects. Edited by D. J. Bullen & E. Griffiths: Wiley.
  52. Weissman, Z., Shemer, R. & Kornitzer, D. ( 2002; ). Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol Microbiol 44, 1551–1560.[CrossRef]
    [Google Scholar]
  53. Wickerham, L. J. ( 1951; ). Taxonomy of yeast. US Dep Agric Tech Bull 1029, 11–59.
    [Google Scholar]
  54. Wilson, R. B., Davis, D. & Mitchell, A. P. ( 1999; ). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181, 1868–1874.
    [Google Scholar]
  55. Yamaguchi-Iwai, Y., Serpe, M., Haile, D., Yang, W., Kosman, D. J., Klausner, R. D. & Dancis, A. ( 1997; ). Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem 272, 17711–17718.[CrossRef]
    [Google Scholar]
  56. Yuan, D. S., Stearman, R., Dancis, A., Dunn, T., Beeler, T. & Klausner, R. D. ( 1995; ). The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A 92, 2632–2636.[CrossRef]
    [Google Scholar]
  57. Yun, C. W., Ferea, T., Rashford, J., Ardon, O., Brown, P. O., Botstein, D., Kaplan, J. & Philpott, C. C. ( 2000a; ). Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J Biol Chem 275, 10709–10715.[CrossRef]
    [Google Scholar]
  58. Yun, C. W., Tiedeman, J. S., Moore, R. E. & Philpott, C. C. ( 2000b; ). Siderophore-iron uptake in Saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. J Biol Chem 275, 16354–16359.[CrossRef]
    [Google Scholar]
  59. Zhou, P. B. & Thiele, D. J. ( 1991; ). Isolation of a metal-activated transcription factor gene from Candida glabrata by complementation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88, 6112–6116.[CrossRef]
    [Google Scholar]
  60. Zhu, Z., Labbe, S., Pena, M. M. & Thiele, D. J. ( 1998; ). Copper differentially regulates the activity and degradation of yeast Mac1 transcription factor. J Biol Chem 273, 1277–1280.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27004-0
Loading
/content/journal/micro/10.1099/mic.0.27004-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error