1887

Abstract

This research developed a community genome array (CGA) to assess the effects of on rumen microbiology. produces non-protein amino acids as well as tannins, which may be toxic to animals, and CGA was used to assess the effects of this plant on the ecology of the rumen. CGAs were developed using a 7·5 cm×2·5 cm nylon membrane format that included up to 96 bacterial genomes. It was possible to separately hybridize large numbers of membranes at once using this mini-membrane format. Pair-wise cross-hybridization experiments were conducted to determine the degree of cross-hybridization between strains; cross-hybridization occurred between strains of the same species, but little cross-reactivity was observed among different species. CGAs were successfully used to survey the microbial communities of animals consuming an containing diet but quantification was not precise. To properly quantify and validate the CGA, and populations were independently assessed using 16S rDNA probes to extracted rRNA. The CGA detected an increase in these populations as acacia increased in the diet, which was confirmed by rRNA analysis. There was a great deal of variation among strains of the same species in how they responded to . However, in general strains tended to be resistant to the tannins in the acacia while was sensitive. On the other hand some species, like streptococci, varied. -like strains were sensitive to an increase in acacia in the diet while -like strains were resistant. has independently been shown to be resistant to tannins. It is concluded that there is significant variation in tannin resistance between strains of the same species. This implies that there are specific molecular mechanisms at play that are independent of the phylogenetic position of the organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26953-0
2004-09-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/9/mic1502899.html?itemId=/content/journal/micro/10.1099/mic.0.26953-0&mimeType=html&fmt=ahah

References

  1. Blaut, M., Collins, M. D., Welling, G. W., Dore, J., van Loo, J. & de Vos, W. ( 2002; ). Molecular biological methods for studying the gut microbiota: the EU human gut flora project. Br J Nutr 87, Suppl 2, S203–S211.
    [Google Scholar]
  2. Bonnet, R., Suau, A., Dore, J., Gibson, G. R. & Collins, M. D. ( 2002; ). Differences in rDNA libraries of faecal bacteria derived from 10- and 25-cycle PCRs. Int J Syst Evol Microbiol 52, 757–763.[CrossRef]
    [Google Scholar]
  3. Brooker, J. D. & O'Donovan, L. ( 2001; ). Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology 147, 1025–1033.
    [Google Scholar]
  4. Brooker, J. D., O'Donovan, L. A., Skene, I., Clarke, K., Blackall, L. & Muslera, P. ( 1994; ). Streptococcus caprinus sp. nov., a tannin-resistant ruminal bacterium from feral goats. Lett Appl Microbiol 18, 313–318.[CrossRef]
    [Google Scholar]
  5. Brooker, J. D., Rakhamani, S., O'Donovan, L., McSweeney, C. S. & Krause, D. O. ( 2002; ). Effect of tannins and other secondary plant products on microbial populations and gut function. In Beyond Antimicrobials: the Future of Gut Microbiology, 12–15 June, 2002. Edited by R. J. Wallace. Aberdeen: Rowett Research Institute.
  6. Bryant, M. P. ( 1972; ). Commentary on the Hungate technique for culture of anaerobic bacteria. J Clin Nutr 25, 1324–1328.
    [Google Scholar]
  7. Bush, K. J., Russell, R. W. & Young, J. W. ( 1979; ). Quantitative separation of volatile fatty acids by high-pressure liquid chromatography. J Liq Chromatogr 2, 1367–1374.[CrossRef]
    [Google Scholar]
  8. Cho, J. C. & Tiedje, J. M. ( 2002; ). Quantitative detection of microbial genes by using DNA microarrays. Appl Environ Microbiol 68, 1425–1430.[CrossRef]
    [Google Scholar]
  9. Cho, J. C., Tiedje, J. M., Bina, J., Zhu, J., Dziejman, M., Faruque, S., Calderwood, S. & Mekalanos, J. ( 2002; ). Quantitative detection of microbial genes by using DNA microarrays: ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Appl Environ Microbiol 68, 1425–1430.[CrossRef]
    [Google Scholar]
  10. Churchill, G. A. ( 2002; ). Fundamentals of experimental design for cDNA microarrays. Nat Genet 32, Suppl, 490–495.
    [Google Scholar]
  11. Devereux, R., He, S. H., Doyle, C. L., Orkland, S., Stahl, D. A., LeGall, J. & Whitman, W. B. ( 1990; ). Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172, 3609–3619.
    [Google Scholar]
  12. El-Hassan, S. M., Kassi, A. L., Newbold, C. J. & Wallace, R. J. ( 2000; ). Chemical composition and degradation characteristics of foliage of some African multipurpose trees. Anim Feed Sci Technol 86, 27–37.[CrossRef]
    [Google Scholar]
  13. Firoved, A. M. & Deretic, V. ( 2003; ). Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J Bacteriol 185, 1071–1081.[CrossRef]
    [Google Scholar]
  14. Forster, R. J., Whitford, M. F., Teather, R. M. & Krause, D. O. ( 1998; ). Investigations into rumen microbial diversity using molecular cloning and probing techniques. In Genetics, Biochemistry, and Ecology of Cellulose Degradation, pp. 16–24. Japan: Sukuka.
  15. Fox, G. F., Wisotzkey, J. D. & Jurtshuk, J. P. ( 1992; ). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42, 166–170.[CrossRef]
    [Google Scholar]
  16. Greene, E. A. & Voordouw, G. ( 2003; ). Analysis of environmental microbial communities by reverse sample genome probing. J Microbiol Methods 53, 211–219.[CrossRef]
    [Google Scholar]
  17. Hashsham, S. A., Fernandez, A. S., Dollhopf, S. L., Dazzo, F. B., Hickey, R. F., Tiedje, J. M. & Criddle, C. S. ( 2000; ). Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66, 4050–4057.[CrossRef]
    [Google Scholar]
  18. Haslam, E. ( 1989; ). Enzyme inhibition. In Plant Polyphenols. Vegetable Tannins Revisited, pp. 172–176. Melbourne: Cambridge University Press.
  19. Hove, L., Topps, J. H., Sibanda, S. & Ndlovu, L. R. ( 2001; ). Nutrient intake and utilization by goats fed dried leaves of the shrub legumes Acacia angustissima, Calliandra calothyrsus and Leucaena leucocephala as supplements to native pasture hay. Anim Feed Sci Technol 91, 95–106.[CrossRef]
    [Google Scholar]
  20. Hugenholtz, P. ( 2002; ). Exploring prokaryotic diversity in the genomic era. Genome Biol 3, 1–8.
    [Google Scholar]
  21. Jones, G. A., McAllister, T. A., Muir, A. D. & Cheng, K.-J. ( 1994; ). Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl Environ Microbiol 60, 1374–1378.
    [Google Scholar]
  22. Keswani, J. & Whitman, W. B. ( 2001; ). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51, 667–678.
    [Google Scholar]
  23. Khanbabaee, K. & van Ree, T. ( 2001; ). Tannins: classification and definition. Nat Prod Rep 18, 641–649.[CrossRef]
    [Google Scholar]
  24. Koizumi, Y., Kelly, J. J., Nakagawa, T., Urakawa, H., El-Fantroussi, S., Al-Muzaini, S., Fukui, M., Urushigawa, Y. & Stahl, D. A. ( 2002; ). Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology. Appl Environ Microbiol 68, 3215–3219.[CrossRef]
    [Google Scholar]
  25. Krause, D. O. & McSweeney, C. S. ( 2002; ). Construction of microbial metagenomes from uncultured rumen microorganisms. In CSIRO Biotechnology Conference, Australia, 17 to 19 April. Noosa, Australia. Canberra, CSIRO Publishing.
  26. Krause, D. O. & Russell, J. B. ( 1996; ). How many ruminal bacteria are there? J Dairy Sci 79, 1467–1475.[CrossRef]
    [Google Scholar]
  27. Krause, D. O., Dalrymple, B. P., Smith, W. J., Mackie, R. I. & McSweeney, C. S. ( 1999; ). 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens: design of a signature probe and its application in adult sheep. Microbiology 145, 1797–1807.[CrossRef]
    [Google Scholar]
  28. Krause, D. O., Smith, W. J. & McSweeney, C. S. ( 2001a; ). Extraction of microbial DNA from rumen contents containing plant tannins. Biotechniques 31, 294–298.
    [Google Scholar]
  29. Krause, D. O., Bunch, R. J., Conlan, L. L., Kennedy, P. M., Smith, W. J., Mackie, R. I. & McSweeney, C. S. ( 2001b; ). Repeated ruminal dosing of Ruminococcus spp. does not result in persistence, but changes in other microbial populations occur that can be measured with quantitative 16S-rRNA-based probes. Microbiology 147, 1719–1729.
    [Google Scholar]
  30. Krause, D. O., Denman, S. E., Mackie, R. I., Morrison, M., Rae, A. L., Attwood, G. T. & McSweeney, C. S. ( 2003a; ). Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27, 663–693.[CrossRef]
    [Google Scholar]
  31. Krause, D. O., Pamanadbha, J., Trebbin, A., Al-Jassim, R. & McSweeney, C. S. ( 2003b; ). Construction of BAC libraries from the rumen microbial ecosystem. In CSIRO Horizons Conference, Surfers Paradise, Australia 25–28 May. Canberra: CSIRO Publishing.
  32. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 7 other authors ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  33. McSweeney, C. S., Palmer, B., Bunch, R. & Krause, D. O. ( 1999; ). Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus. Appl Environ Microbiol 65, 3075–3083.
    [Google Scholar]
  34. McSweeney, C. S., Conlan, L. L., Hegarty, M., Krause, D. O., Gough, J. & Orr, P. ( 2000; ). HPLC identification of toxic non-protein amino acids in the tropical leguminous tree Acacia angustissima. In Aust Soc Anim Prod, Sydney, Australia.
  35. McSweeney, C. S., Palmer, B., Bunch, R. & Krause, D. O. ( 2001; ). Effect of the tropical forage calliandra on microbial protein synthesis and ecology in the rumen. J Appl Microbiol 90, 78–88.[CrossRef]
    [Google Scholar]
  36. Min, B. R., Attwood, G. T., Reilly, K., Sun, W., Peters, J. S., Barry, T. N. & McNabb, W. C. ( 2002; ). Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Can J Microbiol 48, 911–921.[CrossRef]
    [Google Scholar]
  37. Molan, A. L., Attwood, G. T., Min, B. R. & McNabb, W. C. ( 2001; ). The effect of condensed tannins from Lotus pedunculatus and Lotus corniculatus on the growth of proteolytic rumen bacteria in vitro and their possible mode of action. Can J Microbiol 47, 626–633.[CrossRef]
    [Google Scholar]
  38. Odenyo, A. A. & Osuji, P. O. ( 1998; ). Tannin-tolerant ruminal bacteria from East African ruminants. Can J Microbiol 44, 905–909.[CrossRef]
    [Google Scholar]
  39. Odenyo, A. A., Osuji, P. O. & Adinew, K. K. ( 1997; ). Microbiological evaluation of Acacia angustissima as a protein supplement for sheep. Anim Feed Sci Technol 65, 99–112.[CrossRef]
    [Google Scholar]
  40. Peplies, J., Glockner, F. O. & Amann, R. ( 2003; ). Optimization strategies for DNA microarray-based detection of bacteria with 16S rRNA-targeting oligonucleotide probes. Appl Environ Microbiol 69, 1397–1407.[CrossRef]
    [Google Scholar]
  41. Rondon, M. R., August, P. R., Bettermann, A. D. & 13 other authors ( 2000; ). Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66, 2541–2547.[CrossRef]
    [Google Scholar]
  42. Rudi, K., Flateland, S. L., Hanssen, J. F., Bengtsson, G. & Nissen, H. ( 2002; ). Development and evaluation of a 16S ribosomal DNA array-based approach for describing complex microbial communities in ready-to-eat vegetable salads packed in a modified atmosphere. Appl Environ Microbiol 68, 1146–1156.[CrossRef]
    [Google Scholar]
  43. Sayler, G. S., Fleming, J. T. & Nivens, D. E. ( 2001; ). Gene expression monitoring in soils by mRNA analysis and gene lux fusions. Curr Opin Biotechnol 12, 455–460.[CrossRef]
    [Google Scholar]
  44. Smith, A. H., Odenyo, A. A., Osuji, P. O., Wallig, M. A., Kandil, F. E., Seigler, D. S. & Mackie, R. I. ( 2001; ). Evaluation of toxicity of Acacia angustissima in a rat bioassay. Anim Feed Sci Technol 91, 41–57.[CrossRef]
    [Google Scholar]
  45. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  46. Voordouw, G., Voordouw, J. K., Karkhoff-Schweizer, R. R., Fedorak, P. M. & Westlake, D. W. S. ( 1991; ). Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl Environ Microbiol 57, 3070–3078.
    [Google Scholar]
  47. Voordouw, G., Shen, Y., Harrington, C. S., Telang, A. J., Jack, T. R. & Westlake, D. W. S. ( 1993; ). Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters. Appl Environ Microbiol 59, 4101–4114.
    [Google Scholar]
  48. Wallace, R. J., Arthaud, L. & Newbold, C. J. ( 1994; ). Influence of Yucca schidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Appl Environ Microbiol 60, 1762–1767.
    [Google Scholar]
  49. Wilson, K. H., Wilson, W. J., Radosevich, J. L., DeSantis, T. Z., Viswanathan, V. S., Kuczmarski, T. A. & Andersen, G. L. ( 2002; ). High-density microarray of small-subunit ribosomal DNA probes. Appl Environ Microbiol 68, 2535–2541.[CrossRef]
    [Google Scholar]
  50. Ziemer, C. J., Sharp, R., Stern, M. D., Cotta, M. A., Whitehead, T. R. & Stahl, D. A. ( 2002; ). Persistence and functional impact of a microbial inoculant on native microbial community structure, nutrient digestion and fermentation characteristics in a rumen model. Syst Appl Microbiol 25, 416–422.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26953-0
Loading
/content/journal/micro/10.1099/mic.0.26953-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error