1887

Abstract

The complete nucleotide sequences of the two plasmids from the phytoplasma beet leafhopper-transmitted virescence agent (BLTVA) have been determined. The larger plasmid, pBLTVA-1, was 10 785 nt in length and contained 11 putative ORFs, almost all of which were duplicated or triplicated on the plasmid due to the presence of large repeated regions. The sequence contained a series of tandem repeats, the largest of which was 338 nt long. The sequences of ORFs 4 and 11 showed homology with the replication genes of plasmids from other phytoplasmas and from geminiviruses. ORF9, the only ORF present as a single copy, showed homology with DNA primase genes from bacterial chromosomes and contained the conserved zinc finger and topoisomerase/primase domains. None of the other eight ORFs showed homology with known sequences in the GenBank database. pBLTVA-2 was 2587 nt in length, and all of its sequence was nearly identical to sequences from pBLTVA-1, most of which spanned ORFs 10 and 11, including the 338 nt tandem repeat. Analysis of 30 strains of BLTVA showed that most of the 11 putative ORFs were present, but the size of the plasmids varied in these strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26806-0
2004-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501809.html?itemId=/content/journal/micro/10.1099/mic.0.26806-0&mimeType=html&fmt=ahah

References

  1. Ahrens, U. & Seemüller, E. ( 1992; ). Detection of DNA of plant pathogenic mycoplasma-like organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology 82, 828–832.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. L. ( 1997; ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Aravind, L., Leipe, D. D. & Koonin, E. U. ( 1998; ). Toprim – a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res 26, 4205–4213.[CrossRef]
    [Google Scholar]
  4. Benson, G. ( 1999; ). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580.[CrossRef]
    [Google Scholar]
  5. del Solar, G., Giraldo, R., Ruiz-Echevarría, M. J., Espinosa, M. & Díaz-Orejas, R. ( 1998; ). Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62, 434–464.
    [Google Scholar]
  6. Denes, A. S. & Sinha, R. C. ( 1992; ). Alteration of clover phyllody mycoplasma DNA after in vitro culturing of phyllody-diseased clover. Can J Plant Pathol 14, 189–196.[CrossRef]
    [Google Scholar]
  7. Eberhard, W. G. ( 1990; ). Evolution in bacterial plasmids and levels of selection. Q Rev Biol 65, 3–22.[CrossRef]
    [Google Scholar]
  8. Feinberg, A. P. & Vogelstein, B. ( 1983; ). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132, 6–13.[CrossRef]
    [Google Scholar]
  9. Golino, D. A., Oldfield, G. N. & Gumpf, D. J. ( 1987; ). Transmission characterisitics of the beet leafhopper transmitted virescence agent. Phytopathology 77, 954–957.[CrossRef]
    [Google Scholar]
  10. Golino, D. A., Oldfield, G. N. & Gumpf, D. J. ( 1988; ). Induction of flowering through infection by beet leafhopper transmitted virescence agent. Phytopathology 78, 285–288.[CrossRef]
    [Google Scholar]
  11. Golino, D. A., Oldfield, G. N. & Gumpf, D. J. ( 1989; ). Experimental hosts of the beet leafhopper-transmitted virescence agent. Plant Dis 73, 850–854.[CrossRef]
    [Google Scholar]
  12. Ilyina, T. V. & Koonin, E. V. ( 1992; ). Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eukaryotes and archaebacteria. Nucleic Acids Res 20, 3279–3285.[CrossRef]
    [Google Scholar]
  13. Ilyina, T. V., Gorbalenya, A. E. & Koonin, E. V. ( 1992; ). Organization and evolution of bacterial and bacteriophage primase-helicase systems. J Mol Evol 34, 351–357.[CrossRef]
    [Google Scholar]
  14. Kirkpatrick, B. C. ( 1992; ). Mycoplasma-like organisms – plant and invertebrate pathogens. In The Prokaryotes, vol. IV, 2nd edn, pp. 4050–4068. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  15. Kirkpatrick, B. C., Stenger, D. C., Morris, T. J. & Purcell, A. H. ( 1987; ). Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science 238, 197–200.[CrossRef]
    [Google Scholar]
  16. Koch, A. L. ( 1981; ). Evolution of antibiotic resistance gene function. Microbiol Rev 45, 355–378.
    [Google Scholar]
  17. Kuske, C. R. & Kirkpatrick, B. C. ( 1990; ). Identification and characterization of plasmids from the western aster yellows mycoplasmalike organism. J Bacteriol 172, 1628–1633.
    [Google Scholar]
  18. Lukashin, A. & Borodovsky, M. ( 1998; ). GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26, 1107–1115.[CrossRef]
    [Google Scholar]
  19. Nakashima, K. & Hayashi, T. ( 1995; ). Extrachromosomal DNAs of rice yellow dwarf and sugarcane white leaf phytoplasmas. Ann Phytopathol Soc Jpn 61, 456–462.[CrossRef]
    [Google Scholar]
  20. Nakashima, K. & Hayashi, T. ( 1997; ). Sequence analysis of extrachromosomal DNA of sugarcane white leaf phytoplasma. Ann Phytopathol Soc Jpn 63, 21–25.[CrossRef]
    [Google Scholar]
  21. Nishigawa, H., Miyata, S., Oshima, K., Sawayanagi, T., Komoto, A., Kuboyama, T., Matsuda, I., Tsuchizaki, T. & Namba, S. ( 2001; ). In planta expression of a protein encoded by the extrachromosomal DNA of a phytoplasma and related to geminivirus replication proteins. Microbiology 147, 507–513.
    [Google Scholar]
  22. Nishigawa, H., Oshima, K., Kakizawa, S., Jung, H., Kuboyama, T., Miyata, S., Ugaki, M. & Namba, S. ( 2002a; ). A plasmid from a non-insect-transmissible line of a phytoplasma lacks two open reading frames that exist in the plasmid from the wild-type line. Gene 298, 195–201.[CrossRef]
    [Google Scholar]
  23. Nishigawa, H., Oshima, K., Kakizawa, S., Jung, H., Kuboyama, T., Miyata, S., Ugaki, M. & Namba, S. ( 2002b; ). Evidence of intermolecular recombination between extrachromosomal DNAs in phytoplasma: a trigger for the biological diversity of phytoplasma? Microbiology 148, 1389–1396.
    [Google Scholar]
  24. Nishigawa, H., Oshima, K., Miyata, S., Ugaki, M. & Namba, S. ( 2003; ). Complete set of extrachromosomal DNAs from three pathogenic lines of onion yellows phytoplasma and use of PCR to differentiate each line. J Gen Plant Pathol 69, 194–198.
    [Google Scholar]
  25. Oshima, K., Shiomi, T., Kuboyama, T., Sawayanagi, T., Nishigawa, H., Kakizawa, S., Miyata, S., Ugaki, M. & Namba, S. ( 2001; ). Isolation and characterization of derivative lines of the onion yellows phytoplasma that do not cause stunting or phloem hyperplasia. Phytopathology 91, 1024–1029.[CrossRef]
    [Google Scholar]
  26. O'Sullivan, T., van Sinderen, D. & Fitzgerald, G. ( 1999; ). Structural and functional analysis of pCI65st, a 6·5 kb plasmid from Streptococcus thermophilus NDI-6. Microbiology 145, 127–134.[CrossRef]
    [Google Scholar]
  27. Pansegrau, W. & Lanka, E. ( 1992; ). A common sequence motif among prokaryotic DNA primases. Nucleic Acids Res 20, 4931.[CrossRef]
    [Google Scholar]
  28. Rekab, D., Carraro, L., Schneider, B., Seemüller, E., Chen, J., Chang, C.-J., Locci, R. & Firrao, G. ( 1999; ). Geminivirus-related extrachromosomal DNAs of the X-clade phytoplasmas share high sequence similarity. Microbiology 145, 1453–1459.[CrossRef]
    [Google Scholar]
  29. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Saraste, M., Sibbald, P. R. & Wittinghofer, A. ( 1990; ). The P-loop – a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15, 430–434.[CrossRef]
    [Google Scholar]
  31. Shaw, M. E. ( 1991; ). Biological and molecular characterization of virescence agents infecting herbaceous crops in California. PhD thesis, University of California, Davis, USA.
  32. Shaw, M. E., Kirkpatrick, B. C. & Golino, D. A. ( 1990; ). Infection of radish in Idaho by leafhopper-transmitted virescence agent. Plant Dis 74, 252.
    [Google Scholar]
  33. Shaw, M. E., Kirkpatrick, B. C. & Golino, D. A. ( 1993; ). The beet leafhopper-transmitted virescence agent is the causal agent of tomato big bud disease in California. Plant Dis 77, 290–295.[CrossRef]
    [Google Scholar]
  34. Smart, C. D., Thompson, S. V., Flint, K. & Kirkpatrick, B. C. ( 1993; ). The beet leafhopper-transmitted virescence agent is associated with diseased potatoes in Utah. Phytopathology 83, 1399.
    [Google Scholar]
  35. Strack, B., Lessl, M., Calendar, R. & Lanka, E. ( 1992; ). The common sequence motif, -E-G-Y-A-T-A-, identified within the primase domains of plasmid-encoded I- and P-type DNA primases and the α protein of the Escherichia coli satellite phage P4. J Biol Chem 267, 13062–13072.
    [Google Scholar]
  36. Tatusova, T. A. & Madden, T. L. ( 1999; ). Blast 2 sequences – a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174, 247–250.[CrossRef]
    [Google Scholar]
  37. Versalovic, J. & Lupski, J. R. ( 1993; ). The Haemophilus influenzae dnaG sequence and conserved bacterial primase motifs. Gene 136, 281–286.[CrossRef]
    [Google Scholar]
  38. Zünd, P. & Lebak, G. ( 1980; ). Generation time-prolonging R plasmids: correlation between increases in the generation time of Escherichia coli caused by R plasmids and their molecular size. Plasmid 3, 65–69.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26806-0
Loading
/content/journal/micro/10.1099/mic.0.26806-0
Loading

Data & Media loading...

Alignment of the deduced amino acid sequences of (a) ORFs 1 and 5, (b) ORFs 2, 6 and 7, and (c) ORFs 3 and 8 from pBLTVA-1.

PDF

Multiple alignment of the deduced amino acid sequences of ORF4 and ORF11 of pBLTVA-1 with homologous genes. The sequences included in the alignment were: TbLCYNV, tobacco leaf curl Yunnan virus (accession no. CAD54833); WmCSV, watermelon chlorotic stunt virus (accession no. CAB65506); pPNWB, plasmid from peanut witches'-broom phytoplasma (accession no. AAP44293); EcOYW1, plasmid from onion yellows phytoplasma (accession no. BAA36391). Motifs 1, 2 and 3 denote the conserved Rep protein motifs and the asterisk denotes the active Tyr residue identified by Ilyina & Koonin (1992).

PDF

Fig. S3 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error