1887

Abstract

The entomopathogenic fungus has been successfully used in the control of several insect pests. Asexually produced spores (conidia) are the means for dispersal and transmission of the entomopathogen; upon contact with the insect cuticle they germinate and penetrate the host. In model fungal systems it has been found that phototropism, resetting of the circadian rhythm, the induction of carotenogenesis and the development of reproductive structures are controlled by blue light. The effect of light quality on conidial yield of was investigated. Incubation in total darkness resulted in continued vegetative growth and lack of reproductive structures. In contrast, growth of the fungus in continuous illumination or under a night–day regime resulted in prolific formation of conidiophores bearing abundant mature conidia. Conidiation was photoinduced in competent mycelia by a single pulse of blue light and colonies were competent only after they had grown at least 72 h under total darkness. The fluence–response curves generated with blue light indicated that the minimal fluence required for the photomorphogenetic response was 180 μmol m and the half-maximal response was at 400 μmol m. A fluence of 540 μmol m was enough to saturate the system, inducing the maximum production of 2·12×10 conidia per colony. Higher light intensities markedly decreased conidiation, suggesting the occurrence of a process of adaptation. The authors propose the existence of a dual light-perception system with at least two photoreceptors in , one promoting and one inhibiting conidiation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26717-0
2004-02-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500311.html?itemId=/content/journal/micro/10.1099/mic.0.26717-0&mimeType=html&fmt=ahah

References

  1. Arrach, N., Fernández-Martín, R., Cerdá-Olmedo, E. & Avalos, J. ( 2001; ). A single gene for lycopene cyclase, phytoene synthase and regulation of carotene biosynthesis in Phycomyces. Proc Natl Acad Sci U S A 98, 1687–1692.[CrossRef]
    [Google Scholar]
  2. Bergman, K., Burke, P. V., Cerdá-Olmedo, E. & 8 other authors ( 1969; ). Phycomyces. Bacteriol Rev 33, 99–119.
    [Google Scholar]
  3. Berrocal-Tito, G., Sametz-Baron, L., Eichenberg, K., Horwitz, B. & Herrera-Estrella, A. ( 1999; ). Rapid blue light regulation of a Trichoderma harzianum photolyase gene. J Biol Chem 274, 14288–14294.[CrossRef]
    [Google Scholar]
  4. Betina, V. ( 1984; ). Photoinduced conidiation in Trichoderma viride. Int J Microbiol 2, 55–68.
    [Google Scholar]
  5. Betina, V. ( 1995; ). Photoinduced conidiation in Trichoderma viride. Folia Microbiol 49, 219–224.
    [Google Scholar]
  6. Briggs, W. R. & Christie, J. M. ( 2002; ). Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7, 204–210.[CrossRef]
    [Google Scholar]
  7. Cerdá-Olmedo, E. & Corrochano, L. ( 2001; ). Genetics of Phycomyces and its responses to light. In Photomovement, vol. 1, pp. 589–620. Edited by D. P. Hader & M. Lebert. Amsterdam: Elsevier.
  8. Corrochano, L. M. & Cerdá-Olmedo, E. ( 1990; ). Photomorphogenesis in Phycomyces: competence period and stimulus-response relationships. J Photochem Photobiol B 5, 255–266.[CrossRef]
    [Google Scholar]
  9. Corrochano, L. M. & Cerdá-Olmedo, E. ( 1991; ). Photomorphogenesis in Phycomyces and other fungi. Photochem Photobiol 45, 319–327.
    [Google Scholar]
  10. Corrochano, L. M., Galland, P., Lipson, E. D. & Cedá-Olmedo, E. ( 1988; ). Photomorphogenesis in Phycomyces: fluence-response curves and action spectra. Planta 174, 315–320.[CrossRef]
    [Google Scholar]
  11. De la Torre, M. & Cárdenas-Cota, H. M. ( 1996; ). Production of Paecilomyces fumosoroseus conidia in submerged culture. Entomophaga 41, 443–453.[CrossRef]
    [Google Scholar]
  12. Dunlap, J. C. ( 1999; ). Molecular bases for circadian clocks. Cell 96, 271–280.[CrossRef]
    [Google Scholar]
  13. Galagan, J. E., Calvo, S. E., Borkovich, K. A. & 74 other authors ( 2003; ). Sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868.[CrossRef]
    [Google Scholar]
  14. Galland, P. ( 2002; ). Tropisms of Avena coleoptiles: sine law for gravitropism, exponential law for photogravitropic equilibrium. Planta 215, 779–784.[CrossRef]
    [Google Scholar]
  15. Galland, P. & Lipson, E. D. ( 1987; ). Blue light reception in Phycomyces phototropism: evidence for two photosystems operating in low and high intensity ranges. Proc Natl Acad Sci U S A 84, 104–108.[CrossRef]
    [Google Scholar]
  16. Gressel, J. & Galun, E. ( 1967; ). Morphogenesis in Trichoderma: photoinduction and RNA. Dev Biol 15, 575–598.[CrossRef]
    [Google Scholar]
  17. Gyula, P., Schäfer, E. & Nagy, F. ( 2003; ). Light perception and signaling in higher plants. Curr Opin Plant Biol 6, 446–452.[CrossRef]
    [Google Scholar]
  18. Harding, R. W. & Melles, S. ( 1983; ). Genetic analysis of phototropism of Neurospora crassa perithecial beaks using white collar 1 and albino mutants. Plant Physiol 72, 996–1000.[CrossRef]
    [Google Scholar]
  19. He, Q., Cheng, P., Yang, Y., Wang, L., Gardner, K. H. & Liu, Y. ( 2002; ). White collar-1 binding transcription factor and light sensor. Science 297, 840–843.[CrossRef]
    [Google Scholar]
  20. Horwitz, B. A. ( 1984; ). The sensory pathway for photo-morphogenesis in Trichoderma and its mutants. PhD thesis, Weizmann Institute of Science.
  21. Jackson, M. A., McGuire, M. R., Lacey, L. A. & Wraigtht, S. P. ( 1997; ). Liquid culture production of desiccation tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Mycol Res 101, 35–41.[CrossRef]
    [Google Scholar]
  22. James, R. R. ( 2001; ). Effects of exogenous nutrients on conidial germination and virulence against the silverleaf whitefly for two hyphomycetes. J Invertebr Pathol 77, 99–107.[CrossRef]
    [Google Scholar]
  23. Kuhnel-Kratz, C., Schafer, J. & Hader, D. P. ( 1993; ). Phototaxis in the flagellate, Euglena gracilis, under the effect of microgravity. Microgravity Sci Technol 6, 188–193.
    [Google Scholar]
  24. Kumagai, T. ( 1978; ). Mycochrome system and conidial development in certain fungi imperfecti. Photochem Photobiol 27, 371–379.[CrossRef]
    [Google Scholar]
  25. Kumagai, T. ( 1988; ). Photocontrol of fungal development. Photochem Photobiol 47, 889–896.[CrossRef]
    [Google Scholar]
  26. Kumagai, T. & Oda, Y. ( 1969; ). An action spectrum for photoinduced sporulation in the fungus Trichoderma viride. Plant Cell Physiol 10, 387–392.
    [Google Scholar]
  27. Lakin-Tomas, P. L., Cote, G. G. & Brody, S. ( 1990; ). Circadian rhythms in Neurospora crassa: biochemistry and genetics. Crit Rev Microbiol 17, 365–416.[CrossRef]
    [Google Scholar]
  28. Lauter, F. ( 1996; ). Molecular genetics of fungal photobiology. J Genet 75, 375–386.[CrossRef]
    [Google Scholar]
  29. Lauter, F. & Russo, V. ( 1991; ). Blue light induction of conidiation-specific genes in Neurospora crassa. Nucleic Acids Res 19, 6883–6886.[CrossRef]
    [Google Scholar]
  30. Lauter, F., Yamashiro, C. T. & Yanofsky, C. ( 1997; ). Light stimulation of conidiation in Neurospora crassa: studies with the wild-type strain and mutans wc-1, wc-2 and acon-2. J Photochem Photobiol B 37, 203–211.[CrossRef]
    [Google Scholar]
  31. Linden, H., Ballario, P. & Macino, G. ( 1997; ). Blue light regulation in Neurospora crassa. Fungal Genet Biol 22, 141–150.[CrossRef]
    [Google Scholar]
  32. Loros, J. J. & Dunlap, J. C. ( 2001; ). Genetic and molecular analysis of circadian rhythms in Neurospora. Annu Rev Physiol 63, 757–794.[CrossRef]
    [Google Scholar]
  33. Maier, J., Hecker, R., Rockel, P. & Ninnemann, H. ( 2001; ). Role of nitric oxide synthase in light induced development of sporangiophores in Phycomyces blakesleeanus. Plant Physiol 126, 1323–1330.[CrossRef]
    [Google Scholar]
  34. Mooney, J. L. & Yager, L. N. ( 1990; ). Light is required for conidiation in Aspergillus nidulans. Genes Dev 4, 1473–1482.[CrossRef]
    [Google Scholar]
  35. Ninnemann, H. ( 1991; ). Photostimulation of conidiation of Neurospora crassa. J Photochem Photobiol B 9, 189–199.[CrossRef]
    [Google Scholar]
  36. Pittendrigh, C. S., Bruce, B., Rosensweig, N. S. & Rubin, M. L. ( 1959; ). Growth patterns in Neurospora crassa. Nature 184, 169–170.[CrossRef]
    [Google Scholar]
  37. Potapova, T. V., Levina, N. N., Belozerscaya, T. A., Kritsky, M. S. & Chailakhian, L. M. ( 1984; ). Investigation of electrophysiological responses of Neurospora crassa to blue light. Arch Microbiol 137, 262–265.[CrossRef]
    [Google Scholar]
  38. Qiu, J. & Hardin, P. E. ( 1996; ). Developmental state and the circadian clock interact to influence the timing of eclosion in Drosophila melanogaster. J Biol Rhythms 11, 75–86.[CrossRef]
    [Google Scholar]
  39. Rau, W. & Mitzka-Schnabel, U. ( 1985; ). Carotenoid synthesis in Neurospora crassa. Methods Enzymol 110, 253–267.
    [Google Scholar]
  40. Rua, J., Rodriguez-Aparicio, L. B., Busto, F. & Soler, J. ( 1987; ). Effect of light on several metabolites of carbohydrate metabolism in Phycomyces blakesleeanus. J Bacteriol 169, 904–907.
    [Google Scholar]
  41. Schrott, E. L. ( 1980; ). Fluence response relationship of caretenogenesis in Neurospora crassa. Planta 150, 174–179.[CrossRef]
    [Google Scholar]
  42. Schwerdtfeger, C. & Linden, H. ( 2003; ). VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22, 4846–4855.[CrossRef]
    [Google Scholar]
  43. Sulová, Z. & Farkas, V. ( 1991; ). Photoinduced conidiation in Trichoderma viride: a study with inhibitors. Folia Microbiol 36, 267–270.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26717-0
Loading
/content/journal/micro/10.1099/mic.0.26717-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error