1887

Abstract

In methylotrophic bacteria, formaldehyde is an important but potentially toxic metabolic intermediate that can be assimilated into biomass or oxidized to yield energy. Previously reported was the purification of an NAD(P)-dependent formaldehyde dehydrogenase (FDH) from the obligate methane-oxidizing methylotroph (Bath), presumably important in formaldehyde oxidation, which required a heat-stable factor (known as the modifin) for FDH activity. Here, the major protein component of this FDH preparation was shown by biophysical techniques to comprise subunits of 64 and 8 kDa in an arrangement. N-terminal sequencing of the subunits of FDH, together with enzymological characterization, showed that the tetramer was a quinoprotein methanol dehydrogenase of the type found in other methylotrophs. The FDH preparations were shown to contain a highly active NAD(P)-dependent methylene tetrahydromethanopterin dehydrogenase that was the probable source of the NAD(P)-dependent formaldehyde oxidation activity. These results support previous findings that methylotrophs possess multiple pathways for formaldehyde dissimilation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26707-0
2004-03-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500707.html?itemId=/content/journal/micro/10.1099/mic.0.26707-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. Anthony C.. 1982; The Biochemistry of Methylotrophs New York: Academic Press;
  3. Anthony C.. 1992; The structure of bacterial quinoprotein dehydrogenases. Int J Biochem24:29–39[CrossRef]
    [Google Scholar]
  4. Anthony C., Zatman L. J.. 1964; The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M 27. Biochem J92:614–621
    [Google Scholar]
  5. Anthony C., Zatman L. J.. 1967; The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: a new oxidoreductase prosthetic group. Biochem J104:960–969
    [Google Scholar]
  6. Chistoserdova L., Kuhn M., Lidstrom M. E.. 1994; Identification of a promoter region for mxaF (moxF) from the type I methanotroph,Methylobacter albus BG8. FEMS Microbiol Lett121:343–348[CrossRef]
    [Google Scholar]
  7. Chistoserdova L., Vorholt J. A., Thauer R. K., Lidstrom M. E.. 1998; C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science281:99–102[CrossRef]
    [Google Scholar]
  8. Dalton H., Whittenbury R.. 1976; The acetylene reduction technique as an assay for nitrogenase activity in the methane oxidizing bacterium Methylococcus capsulatus. (Bath). Arch Microbiol109:147–151[CrossRef]
    [Google Scholar]
  9. Duine J. A., Frank J., Jr. 1980; The prosthetic group of methanol dehydrogenase. Purification and some of its properties. Biochem J187:221–226
    [Google Scholar]
  10. Frank J.. 1990; Classification of macromolecular assemblies studied as ‘single particles’. Q Rev Biophys23:281–329[CrossRef]
    [Google Scholar]
  11. Ghosh R., Quayle J. R.. 1981; Purification and properties of the methanol dehydrogenase from Methylophilus methylotrophus. Biochem J199:245–250
    [Google Scholar]
  12. Hanson R. S., Hanson T. E.. 1996; Methylotrophic bacteria. Microbiol Rev60:439–471
    [Google Scholar]
  13. Harris T. K., Davidson V. L.. 1993; A new kinetic model for the steady-state reactions of the quinoprotein methanol dehydrogenase from Paracoccus denitrificans. Biochemistry32:4362–4368[CrossRef]
    [Google Scholar]
  14. Holzenburg A., Shepherd F. H., Ford R. C.. 1994; Localization of the oxygen-evolving complex of photosystem II by Fourier difference analysis. Micron25:447–451[CrossRef]
    [Google Scholar]
  15. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  16. Laue T. M., Shah B. D., Ridgeway T. M., Pelltier S. L.. 1992; Computer aided interpretation of analytical sedimentation data for proteins. In Analytical Ultracentrifugation in Biochemistry and Polymer Science pp90–125 Edited by Harding S. E., Rowe A. J., Horton J. C.. Cambridge, UK: Royal Society of Chemistry;
  17. Millar A. L., Jackson N. A. C., Dalton H., Jennings K. R., Levi M., Wahren B., Dimmock N. J.. 1998; Rapid analysis of epitope-paratope interactions between HIV-1 and a 17-amino-acid neutralizing microantibody by electrospray ionization mass spectrometry. Eur J Biochem258:164–169[CrossRef]
    [Google Scholar]
  18. Murrell J. C., Gilbert B., McDonald I. R.. 2000; Molecular biology and regulation of methane monooxygenase. Arch Microbiol173:325–332[CrossRef]
    [Google Scholar]
  19. Patel R. N., Bose H. R., Mandy W. J., Hoare D. S.. 1972; Physiological studies of methane- and methanol-oxidizing bacteria: comparison of a primary alcohol dehydrogenase from Methylococcus capsulatus(Texas strain) and Pseudomonas species M27. J Bacteriol110:570–577
    [Google Scholar]
  20. Romesser J. A., Wolfe R. S.. 1982; CDR factor, a new co-enzyme required for carbon dioxide reduction to methane by extracts of Methanobacterium thermoautotropicum. Zentbl Bakteriol Mikrobiol Hyg 1 Abt Orig C3:271–276
    [Google Scholar]
  21. Rosenberg M. F., Callaghan R., Ford R. C., Higgins C. F.. 1997; Structure of the multidrug resistance P-glycoprotein to 2·5 nm resolution determined by electron microscopy and image analysis. J Biol Chem272:10685–10694[CrossRef]
    [Google Scholar]
  22. Stirling D. I., Dalton H.. 1978; Purification and properties of an NAD(P)+-linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath). J Gen Microbiol107:19–29[CrossRef]
    [Google Scholar]
  23. Tanaka Y., Yoshida T., Watanabe K., Izumi Y., Mitsunaga T.. 1997; Cloning and analysis of methanol oxidation genes in the methylotroph Hyphomicrobium methylovorum GM2. FEMS Microbiol Lett154:397–401[CrossRef]
    [Google Scholar]
  24. Tate S., Dalton H.. 1999; A low-molecular-mass protein from Methylococcus capsulatus (Bath) is responsible for the regulation of formaldehyde dehydrogenase activity in vitro. Microbiology145:159–167[CrossRef]
    [Google Scholar]
  25. Vorholt J. A., Chistoserdova L., Lidstrom M. E., Thauer R. K.. 1998; The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol180:5351–5356
    [Google Scholar]
  26. Vorholt J. A., Chisterserdova L., Stolyar S. M., Thauer R. K., Lidstrom M. E.. 1999; Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methyl tetrahydromethanopterin cyclohydrolases. J Bacteriol181:5750–5757
    [Google Scholar]
  27. Vorholt J. A., Marx C. J., Lidstrom M. E., Thauer R. K.. 2000; Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol182:6645–6650[CrossRef]
    [Google Scholar]
  28. Wadzinski A. M., Ribbons D. W.. 1975; Oxidation of C1 compounds by particulate fractions from Methylococcus capsulatus: properties of methanol oxidase and methanol dehydrogenase. J Bacteriol122:1364–1374
    [Google Scholar]
  29. Xia Z. X., He Y. N., Dai W. W., White S. A., Boyd G. D., Mathews F. S.. 1999; Detailed active site configuration of a new crystal form of methanol dehydrogenase from Methylophilus W3A1 at 1·9 Å resolution. Biochemistry38:1214–1220[CrossRef]
    [Google Scholar]
  30. Zahn J. A., Bergmann D. J., Boyd J. M., Kunz R. C., DiSpirito A. A.. 2001; Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus. Bath. J Bacteriol183:6832–6840[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26707-0
Loading
/content/journal/micro/10.1099/mic.0.26707-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error