1887

Abstract

An aquaporin gene () was previously detected in the pathogenic bacterium . Earlier studies showed that AqpX mediated rapid and large water fluxes in both directions in response to sudden osmotic up- or downshifts. Here, to study the role and the expression of the gene in , an null mutant was constructed using an  : :  gene fusion. This mutant showed no significant difference in growth rate compared to the wild-type strain when grown in rich and minimal media, demonstrating that disruption of the gene was not lethal for . The role of the AqpX water channel was investigated by exposing the cells to hypo- and hyperosmolar conditions. While in hyperosmolar environments the growth rate of the knockout mutant was not affected, in hypo-osmolar conditions this mutant showed reduced viability after 50 h of growth. -Galactosidase assays and RT-PCR revealed that gene expression and the amount of mRNA were markedly increased in hyperosmolar conditions. Moreover, expression levels were enhanced during the mid-exponential phase of growth. These results indicated that the expression of was regulated during the growth curve and induced in hyperosmolar conditions. This report is believed to be the first example of the induction of a bacterial aquaporin in hypertonic conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26678-0
2003-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493185.html?itemId=/content/journal/micro/10.1099/mic.0.26678-0&mimeType=html&fmt=ahah

References

  1. Agre, P. ( 2000; ). Homer W. Smith award lecture. Aquaporin water channels in kidney. J Am Soc Nephrol 11, 764–777.
    [Google Scholar]
  2. Agre, P., Smith, B. L. & Preston, G. M. ( 1995; ). ABH and Colton blood group antigens on aquaporin-1, the human red cell water channel protein. Transfus Clin Biol 2, 303–308.[CrossRef]
    [Google Scholar]
  3. Ballesteros, M., Kusano, S., Ishihama, A. & Vicente, M. ( 1998; ). The ftsQ1p gearbox promoter of Escherichia coli is a major sigma S-dependent promoter in the ddlB-ftsA region. Mol Microbiol 30, 419–430.[CrossRef]
    [Google Scholar]
  4. Borgnia, M. J. & Agre, P. ( 2001; ). Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc Natl Acad Sci U S A 98, 2888–2893.[CrossRef]
    [Google Scholar]
  5. Borgnia, M. J., Kozono, D., Calamita, G., Maloney, P. C. & Agre, P. ( 1999; ). Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J Mol Biol 291, 1169–1179.[CrossRef]
    [Google Scholar]
  6. Calamita, G. ( 2000; ). The Escherichia coli aquaporin-Z water channel. Mol Microbiol 37, 254–262.[CrossRef]
    [Google Scholar]
  7. Calamita, G., Bishai, W. R., Preston, G. M., Guggino, W. B. & Agre, P. ( 1995; ). Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J Biol Chem 270, 29063–29066.[CrossRef]
    [Google Scholar]
  8. Calamita, G., Kempf, B., Rudd, K. E., Bonhivers, M., Kneip, S., Bishai, W. R., Bremer, E. & Agre, P. ( 1997; ). The aquaporin-Z water channel gene of Escherichia coli: structure, organization and phylogeny. Biol Cell 89, 321–329.[CrossRef]
    [Google Scholar]
  9. Calamita, G., Kempf, B., Bonhivers, M., Bishai, W. R., Bremer, E. & Agre, P. ( 1998; ). Regulation of the Escherichia coli water channel gene aqpZ. Proc Natl Acad Sci U S A 95, 3627–3631.[CrossRef]
    [Google Scholar]
  10. Carbrey, J. M., Cormack, B. P. & Agre, P. ( 2001; ). Aquaporin in Candida: characterization of a functional water channel protein. Yeast 18, 1391–1396.[CrossRef]
    [Google Scholar]
  11. Deen, P. M., Verdijk, M. A., Knoers, N. V., Wieringa, B., Monnens, L. A., van Os, C. H. & van Oost, B. A. ( 1994; ). Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264, 92–95.[CrossRef]
    [Google Scholar]
  12. Delamarche, C., Thomas, D., Rolland, J. P., Froger, A., Gouranton, J., Svelto, M., Agre, P. & Calamita, G. ( 1999; ). Visualization of AqpZ-mediated water permeability in Escherichia coli by cryoelectron microscopy. J Bacteriol 181, 4193–4197.
    [Google Scholar]
  13. Eskra, L., Canavessi, A., Carey, M. & Splitter, G. ( 2001; ). Brucella abortus genes identified following constitutive growth and macrophage infection. Infect Immun 69, 7736–7742.[CrossRef]
    [Google Scholar]
  14. Froger, A., Rolland, J. P., Bron, P. & 7 other authors ( 2001; ). Functional characterization of a microbial aquaglyceroporin. Microbiology 147, 1129–1135.
    [Google Scholar]
  15. Heller, K. B., Lin, E. C. & Wilson, T. H. ( 1980; ). Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J Bacteriol 144, 274–278.
    [Google Scholar]
  16. Hohmann, I., Bill, R. M., Kayingo, I. & Prior, B. A. ( 2000; ). Microbial MIP channels. Trends Microbiol 8, 33–38.[CrossRef]
    [Google Scholar]
  17. Ikeda, S., Nasrallah, J. B., Dixit, R., Preiss, S. & Nasrallah, M. E. ( 1997; ). An aquaporin-like gene required for the Brassica self-incompatibility response. Science 276, 1564–1566.[CrossRef]
    [Google Scholar]
  18. Ishibashi, K., Sasaki, S., Fushimi, K. & 8 other authors ( 1994; ). Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 91, 6269–6273.[CrossRef]
    [Google Scholar]
  19. Johansson, I., Karlsson, M., Johanson, U., Larsson, C. & Kjellbom, P. ( 2000; ). The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465, 324–342.[CrossRef]
    [Google Scholar]
  20. Kokotek, W. & Lotz, W. ( 1991; ). Construction of a mobilizable cloning vector for site-directed mutagenesis of gram-negative bacteria: application to Rhizobium leguminosarum. Gene 98, 7–13.[CrossRef]
    [Google Scholar]
  21. Lee, S. J. & Gralla, J. D. ( 2002; ). Promoter use by sigma 38 (rpoS) RNA polymerase. Amino acid clusters for DNA binding and isomerization. J Biol Chem 277, 47420–47427.[CrossRef]
    [Google Scholar]
  22. Miller, J. ( 1972; ). Experiments in Molecular Biology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  23. Moncalian, G., Grandoso, G., Llosa, M. & de la Cruz, F. ( 1997; ). oriT-processing and regulatory roles of TrwA protein in plasmid R388 conjugation. J Mol Biol 270, 188–200.[CrossRef]
    [Google Scholar]
  24. Pao, G. M., Wu, L. F., Johnson, K. D., Hofte, H., Chrispeels, M. J., Sweet, G., Sandal, N. N. & Saier, M. H., Jr ( 1991; ). Evolution of the MIP family of integral membrane transport proteins. Mol Microbiol 5, 33–37.[CrossRef]
    [Google Scholar]
  25. Preston, G. M., Carroll, T. P., Guggino, W. B. & Agre, P. ( 1992; ). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385–387.[CrossRef]
    [Google Scholar]
  26. Rodriguez, M. C., Froger, A., Rolland, J. P., Thomas, D., Aguero, J., Delamarche, C. & Garcia-Lobo, J. M. ( 2000; ). A functional water channel protein in the pathogenic bacterium Brucella abortus. Microbiology 146, 3251–3257.
    [Google Scholar]
  27. Sambrook, J., Maniatis, T. & Fritsch, E. F. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  28. Santoni, V., Gerbeau, P., Javot, H. & Maurel, C. ( 2000; ). The high diversity of aquaporins reveals novel facets of plant membrane functions. Curr Opin Plant Biol 3, 476–481.[CrossRef]
    [Google Scholar]
  29. Shiels, A. & Bassnett, S. ( 1996; ). Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat Genet 12, 212–215.[CrossRef]
    [Google Scholar]
  30. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering, transposon mutagenesis in Gram negative bacteria. Bio/Technology 1, 784–791.[CrossRef]
    [Google Scholar]
  31. Soupene, E., King, N., Lee, H. & Kustu, S. ( 2002; ). Aquaporin Z of Escherichia coli: reassessment of its regulation and physiological role. J Bacteriol 184, 4304–4307.[CrossRef]
    [Google Scholar]
  32. Verkman, A. S., Shi, L. B., Frigeri, A. & 7 other authors ( 1995; ). Structure and function of kidney water channels. Kidney Int 48, 1069–1081.[CrossRef]
    [Google Scholar]
  33. Wood, J. M. ( 1999; ). Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63, 230–262.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26678-0
Loading
/content/journal/micro/10.1099/mic.0.26678-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error