1887

Abstract

Chitin is an essential structural polysaccharide in fungi that is required for cell shape and morphogenesis. One model for wall synthesis at the growing cell surface suggests that the compliance that is necessary for turgor-driven expansion of the cell wall involves a delicate balance of wall synthesis and lysis. Accordingly, chitin synthesis may involve coordinated regulation of members of the chitin synthase and chitinase gene families. To test this hypothesis, the chitin synthase and chitinase activities of cell-free extracts were measured, as well as the chitin content of cell walls isolated from isogenic mutant strains that contained single or multiple knock-outs in members of these two gene families, in both and . However, deletion of chitinase genes did not markedly affect specific chitin synthase activity, and deletion of single genes had little effect on specific chitinase activity in either fungus. Chitin synthesis and chitinase production was, however, regulated in during yeast–hypha morphogenesis. In , the total specific activities of both chitin synthase and chitinase were higher in the hyphal form, which was attributable mainly to the activities of Chs2 and Cht3, respectively. It appeared, therefore, that chitin synthesis and hydrolysis were not coupled, but that both were regulated during yeast–hypha morphogenesis in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26661-0
2004-04-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1500921.html?itemId=/content/journal/micro/10.1099/mic.0.26661-0&mimeType=html&fmt=ahah

References

  1. Baladrón, V., Ufano, S., Dueñas, E., Martín-Cuadrado, A. B., del Rey, F. & Vàzquez de Aldana, C. R. ( 2002; ). Eng1p, an endo-1,3-β-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot Cell 1, 774–786.[CrossRef]
    [Google Scholar]
  2. Barrett-Bee, K. & Hamilton, M. ( 1984; ). The detection and analysis of chitinase activity from the yeast form of Candida albicans. J Gen Microbiol 130, 1857–1861.
    [Google Scholar]
  3. Bartnicki-Garcia, S. ( 1973; ). Fundamental aspects of hyphal morphogenesis. In Microbial Differentiation (Society for General Microbiology Symposium no. 23), pp. 245–267. Edited by J. M. Ashworth & J. E. Smith. Cambridge: Cambridge University Press.
  4. Bartnicki-Garcia, S. ( 2002; ). Hyphal tip growth: outstanding questions. In Molecular Biology of Fungal Development, pp. 29–59. Edited by H. D. Osiewacz. New York: Marcel Dekker.
  5. Bulawa, C. E. ( 1992; ). CDS2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CDS2 gene product is related to chitin synthase and to developmentally regulated protein in Rhizobium species and Xenopus laevis. Mol Cell Biol 12, 1764–1776.
    [Google Scholar]
  6. Bulawa, C. E. & Osmond, B. C. ( 1990; ). Chitin synthase I and chitin synthase II are not required for chitin synthesis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 87, 7424–7428.[CrossRef]
    [Google Scholar]
  7. Bulawa, C. E., Slater, M., Cabib, E., Au-Young, J., Sburlati, A., Adair, W. L. & Robbins, P. W. ( 1986; ). The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46, 213–225.[CrossRef]
    [Google Scholar]
  8. Bulawa, C. E., Miller, D. W., Henry, L. K. & Becker, J. M. ( 1995; ). Attenuated virulence of chitin-deficient mutants of Candida albicans. Proc Natl Acad Sci U S A 92, 10570–10574.[CrossRef]
    [Google Scholar]
  9. Cabib, E. ( 1987; ). The synthesis and degradation of chitin. Adv Enzymol Relat Areas Mol Biol 59, 59–101.
    [Google Scholar]
  10. Cabib, E., Roberts, R. & Bowers, B. ( 1982; ). Synthesis of the yeast cell wall and its regulation. Annu Rev Biochem 51, 763–793.[CrossRef]
    [Google Scholar]
  11. Cabib, E., Sburlati, A., Bowers, B. & Silverman, S. J. ( 1989; ). Chitin synthase 1, an auxiliary enzyme for chitin synthesis in Saccharomyces cerevisiae. J Cell Biol 108, 1665–1672.[CrossRef]
    [Google Scholar]
  12. Cabib, E., Silverman, S. J. & Shaw, J. A. ( 1992; ). Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J Gen Microbiol 138, 97–102.[CrossRef]
    [Google Scholar]
  13. Choi, W.-J., Santos, B., Durán, A. & Cabib, E. ( 1994; ). Are yeast chitin synthases regulated at the transcriptional or the posttranslational level? Mol Cell Biol 14, 7685–7694.
    [Google Scholar]
  14. Chuang, J. S. & Schekman, R. W. ( 1996; ). Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J Cell Biol 135, 597–610.[CrossRef]
    [Google Scholar]
  15. Dickinson, K., Keer, V., Hitchcock, C. A. & Adams, D. J. ( 1991; ). Microsomal chitinase activity from Candida albicans. Biochim Biophys Acta 1073, 177–182.[CrossRef]
    [Google Scholar]
  16. Fèvre, M. ( 1977; ). Subcellular localization of glucanase and cellulase in Saprolegnia monoica Pringsheim. J Gen Microbiol 103, 287–295.[CrossRef]
    [Google Scholar]
  17. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.
    [Google Scholar]
  18. Gooday, G. W. ( 1995; ). The dynamics of hyphal growth. Mycol Res 99, 385–394.[CrossRef]
    [Google Scholar]
  19. Gooday, G. W., Zhu, W. Y. & O'Donnell, R. W. ( 1992; ). What are the roles of chitinases in the growing fungus? FEMS Microbiol Lett 100, 387–392.[CrossRef]
    [Google Scholar]
  20. Gow, N. A. R. & Gooday, G. W. ( 1982; ). Growth kinetics and morphology of colonies of the filamentous form of Candida albicans. J Gen Microbiol 128, 2187–2194.
    [Google Scholar]
  21. Humphreys, A. M. & Gooday, G. W. ( 1984a; ). Properties of chitinase activity from Mucor mucedo: evidence for a membrane-bound zymogenic form. J Gen Microbiol 130, 1359–1366.
    [Google Scholar]
  22. Humphreys, A. M. & Gooday, G. W. ( 1984b; ). Phospholipid requirement of microsomal chitinase from M. mucedo. Curr Microbiol 11, 187–190.[CrossRef]
    [Google Scholar]
  23. Iranzo, M., Aguado, C., Pallotti, C., Canizares, V. J. & Momeneo, S. ( 2002; ). The use of trypsin to solubilize wall protein from Candida albicans led to the identification of chitinase 2 as an enzyme covalently linked to the yeast wall structure. Res Microbiol 153, 227–232.[CrossRef]
    [Google Scholar]
  24. Jackson, D. J., Saunders, V. A., Gooday, G. W. & Humphreys, A. M. ( 1996; ). Chitinase activities from yeast and hyphal cells of Candida albicans. Mycol Res 100, 321–327.[CrossRef]
    [Google Scholar]
  25. Kapteyn, J. C., Hoyer, L. L., Hecht, J. E., Muller, W. H., Andel, A., Verkleij, A. J., Makarow, M., Van den Ende, H. & Klis, F. M. ( 2000; ). The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35, 601–611.
    [Google Scholar]
  26. Klis, F. M., de Groot, P. & Hellingwerf, K. ( 2001; ). Molecular organization of the cell wall of Candida albicans. Med Mycol 39S, 1–8.
    [Google Scholar]
  27. Kuranda, M. J. & Robbins, P. W. ( 1991; ). Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem 266, 19758–19767.
    [Google Scholar]
  28. Martín-Cuadrado, A. B., Dueñas, E., Sipiczki, M., Vásquez de Aldana, C. R. & del Rey, F. ( 2003; ). The endo-β-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J Cell Sci 116, 1689–1698.[CrossRef]
    [Google Scholar]
  29. McCreath, K. J. & Gooday, G. W. ( 1992; ). A rapid and sensitive microassay for determination of chitinolytic activity. J Microbiol Methods 14, 229–237.[CrossRef]
    [Google Scholar]
  30. McCreath, K. J., Specht, C. A. & Robbins, P. W. ( 1995; ). Molecular cloning and characterization of chitinase genes from Candida albicans. Proc Natl Acad Sci U S A 92, 2544–2548.[CrossRef]
    [Google Scholar]
  31. McCreath, K. J., Specht, C. A., Liu, Y. & Robbins, P. W. ( 1996; ). Molecular cloning of a third chitinase gene (CHT1) from Candida albicans. Yeast 12, 501–504.[CrossRef]
    [Google Scholar]
  32. Mio, T., Yabe, T., Sudoh, M., Satoh, Y., Nakajima, T., Arisawa, M. & Yamada-Okabe, H. ( 1996; ). Role of three chitin synthase genes in the growth of Candida albicans. J Bacteriol 178, 2416–2419.
    [Google Scholar]
  33. Mullins, T. J. ( 1973; ). Lateral branch formation and cellulase production in water molds. Mycologia 65, 1007–1014.[CrossRef]
    [Google Scholar]
  34. Munro, C. A. & Gow, N. A. R. ( 1995; ). Chitin biosynthesis as target for antifungals. In Antifungal Agents: Discovery and Mode of Action, pp.161–171. Edited by G. K. Dixon, L. G. Copping & D. W. Hollomon. Oxford: Bios.
  35. Munro, C. A. & Gow, N. A. R. ( 2001; ). Chitin synthesis in human pathogenic fungi. Med Mycol 39S, 41–53.
    [Google Scholar]
  36. Munro, C. A., Schofield, D. A., Gooday, G. W. & Gow, N. A. ( 1998; ). Regulation of chitin synthesis during dimorphic growth of Candida albicans. Microbiology 144, 391–401.[CrossRef]
    [Google Scholar]
  37. Munro, C. A., Winter, K., Buchan, A., Henry, K., Becker, J. M., Brown, A. J. P., Bulawa, C. E. & Gow, N. A. R. ( 2001; ). Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol 39, 1414–1426.
    [Google Scholar]
  38. Munro, C. A., Whitton, R., Hughes, B., Reilla, M., Selvaggini, S. & Gow, N. A. R. ( 2003; ). CHS8 – a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal Genet Biol 40, 146–158.[CrossRef]
    [Google Scholar]
  39. Popolo, L., Gilardelli, D., Bonfante, P. & Vai, M. ( 1997; ). Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1Δ mutant of Saccharomyces cerevisiae. J Bacteriol 179, 463–469.
    [Google Scholar]
  40. Popolo, L., Gualtieri, T. & Ragni, E. ( 2001; ). The yeast cell-wall salvage pathway. Med Mycol 39S, 111–121.
    [Google Scholar]
  41. Rast, D. M., Horsch, M., Furter, R. & Gooday, G. W. ( 1991; ). A complex chitinolytic system in exponentially growing mycelium of Mucor rouxii: properties and function. J Gen Microbiol 137, 2797–2810.[CrossRef]
    [Google Scholar]
  42. Roncero, C. ( 2002; ). The genetic complexity of chitin synthesis in fungi. Curr Genet 41, 367–378.[CrossRef]
    [Google Scholar]
  43. Shaw, A. J., Mol, P. C., Bowers, B., Silverman, S. J., Valdivieso, M. H., Durán, A. & Cabib, E. ( 1991; ). The function of chitin synthase 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol 114, 111–123.[CrossRef]
    [Google Scholar]
  44. Sietsma, J. H. & Wessels, J. G. H. ( 1994; ). Apical wall biogenesis. In The Mycota I, pp.125–141. Edited by J. G. H. Wessels & H. Meinhardt. Berlin: Springer.
  45. Valdivieso, M. H., Mol, P. C., Shaw, J. A., Cabib, E. & Durán, A. ( 1991; ). CAL1, a gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae. J Cell Biol 114, 1101–1109.[CrossRef]
    [Google Scholar]
  46. Vermeulen, C. A. & Wessels, J. G. H. ( 1984; ). Ultrastructural differences between wall apices of growing and non-growing hyphae of Schizophyllum commune. Protoplasma 120, 123–131.[CrossRef]
    [Google Scholar]
  47. Vermeulen, C. A. & Wessels, J. G. H. ( 1986; ). Chitin biosynthesis by a fungal membrane preparation. Evidence for a transient non-crystalline state of chitin. Eur J Biochem 158, 411–415.[CrossRef]
    [Google Scholar]
  48. Wessels, J. G. H. ( 1984; ). Apical hyphal wall extension. Do lytic enzymes play a role? In Microbial Cell Wall Synthesis and Autolysis, pp. 31–42. Edited by C. Nombela. Berlin: Elsevier.
  49. Wessels, J. G. H. ( 1986; ). Cell wall synthesis in apical hyphal growth. Int Rev Cytol 104, 37–79.
    [Google Scholar]
  50. Wessels, J. G. H. ( 1990; ). Role of cell wall architecture in fungal tip growth generation. In Tip Growth in Plant and Fungal Cells, pp. 1–28. Edited by I. B. Heath. San Diego: Academic Press.
  51. Wessels, J. G. H., Sietsma, J. H. & Sonnenberg, S. M. ( 1983; ). Wall synthesis and assembly during hyphal morphogenesis in Schizophyllum commune. J Gen Microbiol 129, 1607–1616.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26661-0
Loading
/content/journal/micro/10.1099/mic.0.26661-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error