1887

Abstract

A gene cluster containing a gene for maleylacetate reductase (EC 1.3.1.32) was cloned from 335 (DSM 531), which is able to utilize 4-fluorobenzoate as sole carbon source. Sequencing of this gene cluster showed that the 335 maleylacetate reductase gene, , is part of a novel gene cluster, which is not related to the known maleylacetate-reductase-encoding gene clusters. It otherwise comprises a gene for a hypothetical membrane transport protein, , possibly co-transcribed with , and a presumed regulatory gene, , which is divergently transcribed from . MacA was found to be most closely related to TftE, the maleylacetate reductase from AC1100 (62 % identical positions) and to a presumed maleylacetate reductase from a dinitrotoluene catabolic gene cluster from R34 (61 % identical positions). By expressing in , it was confirmed that encodes a functional maleylacetate reductase. Purification of maleylacetate reductase from 4-fluorobenzoate-grown 335 cells allowed determination of the N-terminal sequence of the purified protein, which was shown to be identical to that predicted from the cloned gene, thus proving that the gene is, in fact, recruited for growth of 335 with this substrate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26602-0
2004-02-01
2020-08-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500463.html?itemId=/content/journal/micro/10.1099/mic.0.26602-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. Anderson J. J., Dagley S. 1980; Catabolism of aromatic acids in Trichosporon cutaneum . J Bacteriol141:534–543
    [Google Scholar]
  3. Armengaud J., Timmis K. N., Wittich R.-M. 1999; A functional 4-hydroxysalicylate/hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo- p -dioxin pathway genes in Sphingomonas sp. strain RW1. J Bacteriol181:3452–3461
    [Google Scholar]
  4. Baitsch D., Sandu C., Brandisch R., Igloi G. L. 2001; Gene cluster on pAO1 of Arthrobacter nicotinovorans involved in degradation of the plant alkaloid nicotine: cloning, purification, and characterization of 2,6-dihydroxypyridine 3-hydroxylase. J Bacteriol183:5262–5267[CrossRef]
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  6. Buswell J. A., Eriksson K.-E. 1979; Aromatic ring cleavage by the white-rot fungus Sporotrichum pulverulentum . FEBS Lett104:258–260[CrossRef]
    [Google Scholar]
  7. Cai M., Xun L. 2002; Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol184:4672–4680[CrossRef]
    [Google Scholar]
  8. Chapman P. J., Ribbons D. W. 1976; Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida . J Bacteriol125:985–998
    [Google Scholar]
  9. Daubaras D. L., Hershberger C. D., Kitano K., Chakrabarty A. M. 1995; Sequence analysis of a gene cluster involved in metabolism of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia AC1100. Appl Environ Microbiol61:1279–1289
    [Google Scholar]
  10. Daubaras D. L., Saido K., Chakrabarty A. M. 1996; Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Appl Environ Microbiol62:4276–4279
    [Google Scholar]
  11. Don R. H., Pemberton J. M. 1981; Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus . J Bacteriol145:681–686
    [Google Scholar]
  12. Don R. H., Weightman A. J., Knackmuss H.-J., Timmis K. N. 1985; Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetate acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol161:85–90
    [Google Scholar]
  13. Duxbury J. M., Tiedje J. M., Alexander M., Dawson J. E. 1970; 2,4-D metabolism: enzymatic conversion of chloromaleylacetic acid to succinic acid. J Agric Food Chem18:199–201[CrossRef]
    [Google Scholar]
  14. Eulberg D., Golovleva L. A., Schlömann M. 1997; Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. J Bacteriol179:370–381
    [Google Scholar]
  15. Eulberg D., Kourbatova E. M., Golovleva L. A., Schlömann M. 1998; Evolutionary relationship between chlorocatechol catabolic enzymes from Rhodococcus opacus 1CP and their counterparts in Proteobacteria: sequence divergence and functional convergence. J Bacteriol180:1082–1094
    [Google Scholar]
  16. Feigel B. J., Knackmuss H.-J. 1993; Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture. Arch Microbiol159:124–130[CrossRef]
    [Google Scholar]
  17. Felsenstein J. 1993; phylip (phylogeny inference package), version 3.5c. Department of Genetics University of Washington; Seattle, USA:
    [Google Scholar]
  18. Frantz B., Chakrabarty A. M. 1987; Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Proc Natl Acad Sci U S A84:4460–4464[CrossRef]
    [Google Scholar]
  19. Fritsche K. 1998; Molekularbiologische Untersuchungen zum Chlorphenolabbau durch Stamm S1, ein Proteobakterium der α-2-Untergruppe PhD thesis Martin-Luther-University Halle; Halle/Saale, Germany:
    [Google Scholar]
  20. Gaal A., Neujahr H. Y. 1979; Metabolism of phenol and resorcinol in Trichosporon cutaneum . J Bacteriol137:13–21
    [Google Scholar]
  21. Henikoff S., Haughn G. W., Calvo J. M., Wallace J. C. 1988; A large family of bacterial activator proteins. Proc Natl Acad Sci U S A85:6602–6606[CrossRef]
    [Google Scholar]
  22. Hinner I.-S. 1998; Biochemische und molekularbiologische Untersuchungen zu Lacton-Hydrolasen des bakteriellen Aromaten- und Halogenaromaten-Abbaus PhD thesis University of Stuttgart; Stuttgart, Germany:
    [Google Scholar]
  23. Jain R. K., Dreisbach J. H., Spain J. C. 1994; Biodegradation of p -nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl Environ Microbiol60:3030–3032
    [Google Scholar]
  24. Jenni B., Realini L., Aragno M., Tamer A. Ü. 1988; Taxonomy of non H2-lithotrophic, oxalate-oxidizing bacteria related to Alcaligenes eutrophus . Syst Appl Microbiol10:126–133[CrossRef]
    [Google Scholar]
  25. Johnson G. R., Jain R. K., Spain J. C. 2002; Origins of the 2,4-dinitrotoluene pathway. J Bacteriol184:4219–4232[CrossRef]
    [Google Scholar]
  26. Jones K. H., Trudgill P. W., Hopper D. J. 1995; Evidence of two pathways for the metabolism of phenol by Aspergillus fumigatus . Arch Microbiol163:176–181[CrossRef]
    [Google Scholar]
  27. Kaneko T., Nakamura Y., Sato S.. 14 other authors 2002; Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res9:189–197[CrossRef]
    [Google Scholar]
  28. Karasevich Yu. N., Ivoilov V. S. 1977; Preparatory metabolism of para -hydroxybenzoic acid in the yeast Candida tropicalis . Microbiology (English translation of Mikrobiologiya)46:687–695
    [Google Scholar]
  29. Kasberg T., Daubaras D. L., Chakrabarty A. M., Reineke W. 1995; Evidence that operons tcb , tfd , and clc encode maleylacetate reductase, the fourth enzyme of the modified ortho pathway. J Bacteriol177:3885–3889
    [Google Scholar]
  30. Kasberg T., Seibert V., Reineke W, Schlömann M.. 1997; Cloning, characterization, and sequence analysis of the clcE gene encoding the maleylacetate reductase of Pseudomonas sp strain B13. J Bacteriol179:3801–3803
    [Google Scholar]
  31. Laemmli C. M., Leveau J. H., Zehnder A. J., van der Meer J. R. 2000; Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha . J Bacteriol182:4165–4172[CrossRef]
    [Google Scholar]
  32. Larway P., Evans W. C. 1965; Metabolism of quinol and resorcinol by soil pseudomonads. Biochem J95:52
    [Google Scholar]
  33. Latus M., Seitz H.-J., Lingens F, Eberspächer J.. 1995; Purification and characterization of hydroxyquinol 1,2-dioxygenase from Azotobacter sp strain GP1. Appl Environ Microbiol61:2453–2460
    [Google Scholar]
  34. Liu S., Ogawa N., Miyashita K. 2001; The chlorocatechol degradative genes, tfdT-CDEF , of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols. Gene268:207–214[CrossRef]
    [Google Scholar]
  35. Miyauchi K., Adachi Y., Nagata Y., Takagi M. 1999; Cloning and sequencing of a novel meta -cleavage dioxygenase gene whose product is involved in degradation of γ -hexachlorocyclohexane in Sphingomonas paucimobilis . J Bacteriol181:6712–6719
    [Google Scholar]
  36. Moiseeva O. V., Solyanikova I. P., Kaschabek S. R., Thiel M., Golovleva L. A, Gröning J, Schlömann M. 2002; A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. J Bacteriol184:5282–5292[CrossRef]
    [Google Scholar]
  37. Page R. D. M. 1996; treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358
    [Google Scholar]
  38. Perkins E. J., Gordon M. P., Caceres O., Lurquin P. F. 1990; Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol172:2351–2359
    [Google Scholar]
  39. Plumeier I., Heim S., Pieper D. H, Pérez-Pantoja D., González B.. 2002; Importance of different tfd genes for degradation of chloroaromatics by Ralstonia eutropha JMP134. J Bacteriol184:4054–4064[CrossRef]
    [Google Scholar]
  40. Rani N. L., Lalithakumari D. 1994; Degradation of methyl parathion by Pseudomonas putida . Can J Microbiol40:1000–1006[CrossRef]
    [Google Scholar]
  41. Schell U., Seibert V., Vollmer M., Schlömann M. 1994; TfdF – a second plasmid-encoded maleylacetate reductase of Alcaligenes eutrophus JMP134(pJP4),abstr. P413. Bioengineering10:83
    [Google Scholar]
  42. Schlömann M. 1994; Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases. Biodegradation5:301–321[CrossRef]
    [Google Scholar]
  43. Schlömann M., Schmidt E., Knackmuss H.-J. 1990a; Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J Bacteriol172:5112–5118
    [Google Scholar]
  44. Schlömann M., Fischer P., Schmidt E., Knackmuss H.-J. 1990b; Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. J Bacteriol172:5119–5129
    [Google Scholar]
  45. Seibert V., Schlömann M. 1996; Cloning, sequencing and purification of maleylacetate reductase from Alcaligenes eutrophus 335.In Biospektrum (special issue) p123 abstract PE143.;
    [Google Scholar]
  46. Seibert V., Stadler-Fritzsche K., Schlömann M. 1993; Purification and characterization of maleylacetate reductase from Alcaligenes eutrophus JMP134(pJP4). J Bacteriol175:6745–6754
    [Google Scholar]
  47. Seibert V., Kourbatova E. M., Golovleva L. M., Schlömann M. 1998; Characterization of the maleylacetate reductase MacA of Rhodococcus opacus 1CP and evidence for the presence of an isofunctional enzyme. J Bacteriol180:3503–3508
    [Google Scholar]
  48. Spain J. C., Gibson D. T. 1991; Pathway for biodegradation of p -nitrophenol in a Moraxella sp. Appl Environ Microbiol57:812–819
    [Google Scholar]
  49. Sparnins V. L., Burbee D. G., Dagley S. 1979; Catabolism of l-tyrosine in Trichosporon cutaneum . J Bacteriol138:425–430
    [Google Scholar]
  50. Stolz A., Knackmuss H.-J. 1993; Degradation of 2,4-dihydroxybenzoate by Pseudomonas sp BN9. FEMS Microbiol Lett108:219–224[CrossRef]
    [Google Scholar]
  51. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol185:60–89
    [Google Scholar]
  52. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882[CrossRef]
    [Google Scholar]
  53. van der Meer J. R., Eggen R. I. L., Zehnder A. J. B., de Vos W. M. 1991; Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J Bacteriol173:2425–2434
    [Google Scholar]
  54. van der Meer J. R., de Vos W. M., Harayama S., Zehnder A. J. B. 1992; Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev56:677–694
    [Google Scholar]
  55. Vedler E., Koiv V., Heinaru A. 2000; Analysis of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. Gene255:281–288[CrossRef]
    [Google Scholar]
  56. Wang Y. Z., Zhou Y., Zylstra G. J. 1995; Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D. Environ Health Perspect103:9–12[CrossRef]
    [Google Scholar]
  57. Wood D. W., Setubal J. C., Kaul R.. 48 other authors 2001; The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science294:2317–2323[CrossRef]
    [Google Scholar]
  58. You I. S., Ghosal D., Gunsalus I. C. 1991; Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene ( nahG ) and its 3′-flanking region. Biochemistry30:1635–1641[CrossRef]
    [Google Scholar]
  59. Zaborina O., Latus M., Golovleva L. A., Lingens F, Eberspächer J.. 1995; Purification and characterization of 6-chlorohydroxyquinol 1,2-dioxygenase from Streptomyces rochei 303: comparison with an analogous enzyme from Azotobacter sp. strain GP1. J Bacteriol177:229–234
    [Google Scholar]
  60. Zaborina O., Daubaras D. L., Zago A., Xun L., Saido K., Klem T., Nikolic D., Chakrabarty A. M. 1998; Novel pathway for conversion of chlorohydroxyquinol to maleylacetate in Burkholderia cepacia AC1100. J Bacteriol180:4667–4675
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26602-0
Loading
/content/journal/micro/10.1099/mic.0.26602-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error