1887

Abstract

Botulism food poisoning is caused primarily by ingestion of the neurotoxin (BoNT). The 1300 amino acid BoNT forms a progenitor toxin (PTX) that, when associated with a number of other proteins, increases its oral toxicity by protecting it from the low pH of the stomach and from intestinal proteases. One of these associated proteins, HA1, has also been suggested to be involved with internalization of the toxin into the bloodstream by binding to oligosaccharides lining the intestine. Here is reported the crystal structure of HA1 from type C at a resolution of 1·7 Å. The protein consists of two -trefoil domains and bears structural similarities to the lectin B-chain from the deadly plant toxin ricin. Based on structural comparison to the ricin B-chain lactose-binding sites, residues of type A HA1 were selected and mutated. The D263A and N285A mutants lost the ability to bind carbohydrates containing galactose moieties, implicating these residues in carbohydrate binding.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26586-0
2003-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493361.html?itemId=/content/journal/micro/10.1099/mic.0.26586-0&mimeType=html&fmt=ahah

References

  1. Bailey, S. ( 1994; ). The ccp4 suite: programs for protein crystallography. Acta Crystallogr D 50, 760–763.[CrossRef]
    [Google Scholar]
  2. Faham, S., Hileman, R. E., Fromm, J. R., Linhardt, R. J. & Rees, D. C. ( 1996; ). Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116–1120.[CrossRef]
    [Google Scholar]
  3. Finzel, B. C., Clancy, L. L., Holland, D. R., Muchmore, S. W., Watenpaugh, K. D. & Einspahr, H. M. ( 1989; ). Crystal structure of recombinant human interleukin-1β at 2·0 Å resolution. J Mol Biol 209, 779–791.[CrossRef]
    [Google Scholar]
  4. Fujinaga, Y., Inoue, K., Shimazaki, S. & 8 other authors ( 1994; ). Molecular construction of Clostridium botulinum type C progenitor toxin and its gene organization. Biochem Biophys Res Commun 205, 1291–1298.[CrossRef]
    [Google Scholar]
  5. Fujinaga, Y., Inoue, K., Watanabe, S., Yokota, K., Hirai, Y., Nagamachi, E. & Oguma, K. ( 1997; ). The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology 143, 3841–3847.[CrossRef]
    [Google Scholar]
  6. Fujinaga, Y., Inoue, K., Nomura, T., Sasaki, J., Marvaud, J. C., Popoff, M. R., Kozaki, S. & Oguma, K. ( 2000; ). Identification and characterization of functional subunits of Clostridium botulinum type A progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett 467, 179–183.[CrossRef]
    [Google Scholar]
  7. Habazettl, J., Gondol, D., Wiltscheck, R., Otlewski, J., Schleicher, M. & Holak, T. A. ( 1992; ). Structure of hisactophilin is similar to interleukin-1β and fibroblast growth factor. Nature 359, 855–858.[CrossRef]
    [Google Scholar]
  8. Inoue, K., Fujinaga, Y., Watanabe, T., Ohyama, T., Takeshi, K., Moriishi, K., Nakajima, H. & Oguma, K. ( 1996; ). Molecular composition of Clostridium botulinum type A progenitor toxins. Infect Immun 64, 1589–1594.
    [Google Scholar]
  9. Inoue, K., Fujinaga, Y., Honke, K., Yokota, K., Ikeda, T., Ohyama, T., Takeshi, K., Watanabe, T. & Oguma, K. ( 1999; ). Characterization of haemagglutinin activity of Clostridium botulinum type C and D 16S toxins, and one subcomponent of haemagglutinin (HA1). Microbiology 145, 2533–2542.
    [Google Scholar]
  10. Inoue, K., Fujinaga, Y., Honke, K. & 7 other authors ( 2001; ). Clostridium botulinum type A haemagglutinin-positive progenitor toxin (HA+-PTX) binds to oligosaccharides containing Galβ1–4GlcNAc through one subcomponent of haemagglutinin (HA1). Microbiology 147, 811–819.
    [Google Scholar]
  11. Jahn, R. & Niemann, H. ( 1994; ). Molecular mechanisms of clostridial neurotoxins. Ann N Y Acad Sci 733, 245–255.[CrossRef]
    [Google Scholar]
  12. Kraulis, P. J. ( 1991; ). molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24, 946–950.[CrossRef]
    [Google Scholar]
  13. Lacy, D. B., Tepp, W., Cohen, A. C., DasGupta, B. R. & Stevens, R. C. ( 1998; ). Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5, 898–902.[CrossRef]
    [Google Scholar]
  14. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. ( 1993; ). procheck – a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26, 283–291.[CrossRef]
    [Google Scholar]
  15. Liu, Y., Chirino, A. J., Misulovin, Z., Leteux, C., Feizi, T., Nussenzweig, M. C. & Bjorkman, P. J. ( 2000; ). Crystal structure of the cysteine-rich domain of mannose receptor complexed with a sulfated carbohydrate ligand. J Exp Med 191, 1105–1116.[CrossRef]
    [Google Scholar]
  16. Lund, B. M. ( 1990; ). Foodborne disease due to Bacillus and Clostridium species. Lancet 336, 982–986.[CrossRef]
    [Google Scholar]
  17. McLachlan, A. D. ( 1979; ). Three-fold structural pattern in the soybean trypsin inhibitor (Kunitz). J Mol Biol 133, 557–563.[CrossRef]
    [Google Scholar]
  18. Merritt, E. A. & Bacon, D. J. ( 1997; ). raster3d: photorealistic molecular graphics. Methods Enzymol 277, 505–524.
    [Google Scholar]
  19. Montecucco, C. & Schiavo, G. ( 1994; ). Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol 13, 1–8.[CrossRef]
    [Google Scholar]
  20. Murzin, A. G., Lesk, A. M. & Chothia, C. ( 1992; ). β-Trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukins-1β and 1α and fibroblast growth factors. J Mol Biol 223, 531–543.[CrossRef]
    [Google Scholar]
  21. Notenboom, V., Boraston, A. B., Williams, S. J., Kilburn, D. G. & Rose, D. R. ( 2002; ). High-resolution crystal structures of the lectin-like xylan binding domain from Streptomyces lividans xylanase 10A with bound substrates reveal a novel mode of xylan binding. Biochemistry 41, 4246–4254.[CrossRef]
    [Google Scholar]
  22. Ornitz, D. M., Herr, A. B., Nilsson, M., Westman, J., Svahn, C. M. & Waksman, G. ( 1995; ). FGF binding and FGF receptor activation by synthetic heparan-derived di- and trisaccharides. Science 268, 432–436.[CrossRef]
    [Google Scholar]
  23. Otwinowski, Z. & Minor, V. ( 1997; ). Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307–326.
    [Google Scholar]
  24. Pellegrini, L., Burke, D. F., von Delft, F., Mulloy, B. & Blundell, T. L. ( 2000; ). Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407, 1029–1034.[CrossRef]
    [Google Scholar]
  25. Perrakis, A., Morris, R. & Lamzin, V. S. ( 1999; ). Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6, 458–463.[CrossRef]
    [Google Scholar]
  26. Rutenber, E. & Robertus, J. D. ( 1991; ). Structure of ricin B-chain at 2·5 Å resolution. Proteins 10, 260–269.[CrossRef]
    [Google Scholar]
  27. Rutenber, E., Ready, M. & Robertus, J. D. ( 1987; ). Structure and evolution of ricin B chain. Nature 326, 624–626.[CrossRef]
    [Google Scholar]
  28. Sakaguchi, G., Kozaki, S. & Ohishi, I. ( 1984; ). Structure and function of botulinum toxins. In Bacterial Protein Toxins, pp. 435–443. Edited by J. E. Alouf, F. J. Fehrenbach, J. H. Freer & J. Jelijasawicz. London: Academic Press.
  29. Shapiro, R. L., Hatheway, C. & Swerdlow, D. L. ( 1998; ). Botulism in the United States: a clinical and epidemiologic review. Ann Intern Med 129, 221–228.[CrossRef]
    [Google Scholar]
  30. Sheldrick, G. M., Dauter, Z., Wilson, K. S., Hope, H. & Sieker, L. C. ( 1993; ). The application of direct methods and Patterson interpretation to high-resolution native protein data. Acta Crystallogr Sec D 49, 18–23.[CrossRef]
    [Google Scholar]
  31. Sugii, S., Ohishi, I. & Sakaguchi, G. ( 1977; ). Correlation between oral toxicity and in vitro stability of Clostridium botulinum type A and B toxins of different molecular sizes. Infect Immun 16, 910–914.
    [Google Scholar]
  32. Swaminathan, S. & Eswaramoorthy, S. ( 2000; ). Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7, 693–699.[CrossRef]
    [Google Scholar]
  33. Sweet, R. M., Wright, H. T., Janin, J., Chothia, C. H. & Blow, D. M. ( 1974; ). Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2·6-Å resolution. Biochemistry 13, 4212–4228.[CrossRef]
    [Google Scholar]
  34. Transue, T. R., Smith, A. K., Mo, H., Goldstein, I. J. & Saper, M. A. ( 1997; ). Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus agglutinin. Nat Struct Biol 4, 779–783.[CrossRef]
    [Google Scholar]
  35. Tsuzuki, K., Kimura, K., Fujii, N., Yokosawa, N., Indoh, T., Murakami, T. & Oguma, K. ( 1990; ). Cloning and complete nucleotide sequence of the gene for the main component of hemagglutinin produced by Clostridium botulinum type C. Infect Immun 58, 3173–3177.
    [Google Scholar]
  36. Zhang, J. D., Cousens, L. S., Barr, P. J. & Sprang, S. R. ( 1991; ). Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1β. Proc Natl Acad Sci U S A 88, 3446–3450.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26586-0
Loading
/content/journal/micro/10.1099/mic.0.26586-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error