1887

Abstract

Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes with important structural and signalling functions. Although many prokaryotes lack PC, it can be found in significant amounts in membranes of rather diverse bacteria. Two pathways for PC biosynthesis are known in bacteria, the methylation pathway and the phosphatidylcholine synthase (PCS) pathway. In the methylation pathway, phosphatidylethanolamine is methylated three times to yield PC, in reactions catalysed by one or several phospholipid -methyltransferases (PMTs). In the PCS pathway, choline is condensed directly with CDP-diacylglyceride to form PC in a reaction catalysed by PCS. Using cell-free extracts, it was demonstrated that , , , , and have both PMT and PCS activities. In addition, has PMT activity and , and have PCS activities. Genes from and encoding a Pmt or a Pcs activity and the genes from and responsible for Pcs activity have been identified. Based on these functional assignments and on genomic data, one might predict that if bacteria contain PC as a membrane lipid, they usually possess both bacterial pathways for PC biosynthesis. However, important pathogens such as , and seem to be exceptional as they possess only the PCS pathway for PC formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26522-0
2003-12-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493461.html?itemId=/content/journal/micro/10.1099/mic.0.26522-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Arondel, V., Benning, C. & Sommerville, C. R. ( 1993; ). Isolation and functional expression of a gene encoding phosphatidylethanolamine methyltransferase (EC 2.1.1.17) from Rhodobacter sphaeroides. J Biol Chem 268, 16002–16008.
    [Google Scholar]
  3. Berger, K. H. & Isberg, R. R. ( 1993; ). Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7, 7–19.[CrossRef]
    [Google Scholar]
  4. Bligh, E. G. & Dyer, J. W. ( 1959; ). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911–917.[CrossRef]
    [Google Scholar]
  5. de Rudder, K. E. E., Thomas-Oates, J. E. & Geiger, O. ( 1997; ). Rhizobium meliloti mutants deficient in phospholipid N-methyltransferase still contain phosphatidylcholine. J Bacteriol 179, 6921–6928.
    [Google Scholar]
  6. de Rudder, K. E. E., Sohlenkamp, C. & Geiger, O. ( 1999; ). Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. J Biol Chem 274, 20011–20016.[CrossRef]
    [Google Scholar]
  7. de Rudder, K. E. E., López-Lara, I. M. & Geiger, O. ( 2000; ). Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. Mol Microbiol 37, 763–772.[CrossRef]
    [Google Scholar]
  8. Dulley, J. R. & Grieve, P. A. ( 1975; ). A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem 64, 136–141.[CrossRef]
    [Google Scholar]
  9. Estrada-de los Santos, P., Bustillos-Cristales, R. & Caballero-Mellado, J. ( 2001; ). Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67, 2790–2798.[CrossRef]
    [Google Scholar]
  10. Exton, J. H. ( 1994; ). Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta 1212, 26–42.[CrossRef]
    [Google Scholar]
  11. Feeley, J. C., Gibson, R. J., Gorman, G. W., Langford, N. C., Rasheed, J. K., Mackel, D. C. & Baine, W. B. ( 1979; ). Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol 10, 437–441.
    [Google Scholar]
  12. Glazebrook, J. & Walker, G. C. ( 1991; ). Genetic techniques in Rhizobium meliloti. Methods Enzymol 204, 398–418.
    [Google Scholar]
  13. Grogan, D. W. & Cronan, J. E., Jr ( 1997; ). Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61, 429–441.
    [Google Scholar]
  14. Hamilton, R. H. & Fall, M. Z. ( 1971; ). The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Experientia 27, 229–230.[CrossRef]
    [Google Scholar]
  15. Hanada, T., Kashima, Y., Kosugi, A., Koizumi, Y., Yanagida, F. & Udaka, S. ( 2001; ). A gene encoding phosphatidylethanolamine N-methyltransferase from Acetobacter aceti and some properties of its disruptant. Biosci Biotechnol Biochem 65, 2741–2748.[CrossRef]
    [Google Scholar]
  16. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  17. Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J. & Schweizer, H. P. ( 1998; ). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212, 77–86.[CrossRef]
    [Google Scholar]
  18. Kaneko, T., Nakamura, Y., Sato, S. & 21 other authors ( 2000; ). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7, 331–338.[CrossRef]
    [Google Scholar]
  19. Kaneko, T., Nakamura, Y., Sato, S. & 14 other authors ( 2002; ). Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9, 189–197.[CrossRef]
    [Google Scholar]
  20. Karnezis, T., Fisher, H. C., Neumann, G. M., Stone, B. A. & Stanisich, V. A. ( 2002; ). Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATCC 31749 and effect of its inactivation on production of high-molecular-mass (1→3)-β-d-glucan (curdlan). J Bacteriol 184, 4114–4123.[CrossRef]
    [Google Scholar]
  21. Kent, C. ( 1995; ). Eukaryotic phospholipid biosynthesis. Annu Rev Biochem 64, 315–343.[CrossRef]
    [Google Scholar]
  22. López-Lara, I. M. & Geiger, O. ( 2001; ). Novel pathway for phosphatidylcholine biosynthesis in bacteria associated with eukaryotes. J Biotechnol 91, 211–221.[CrossRef]
    [Google Scholar]
  23. López-Lara, I. M., Sohlenkamp, C. & Geiger, O. ( 2003; ). Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. Mol Plant–Microbe Interact 16, 567–579.[CrossRef]
    [Google Scholar]
  24. Meade, H. M., Long, S. R., Ruvkun, G. B., Brown, S. E. & Ausubel, F. M. ( 1982; ). Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149, 114–122.
    [Google Scholar]
  25. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Minder, A. C., de Rudder, K. E. E., Narberhaus, F., Fischer, H.-M., Hennecke, H. & Geiger, O. ( 2001; ). Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Mol Microbiol 39, 1186–1198.[CrossRef]
    [Google Scholar]
  27. Regensburger, B. & Hennecke, H. ( 1983; ). RNA polymerase from Rhizobium japonicum. Arch Microbiol 135, 103–109.[CrossRef]
    [Google Scholar]
  28. Rock, C. O., Jackowski, S. & Cronan, J. E. ( 1996; ). Lipid metabolism in prokaryotes. In Biochemistry of Lipids, Lipoproteins and Membranes, pp. 35–74. Edited by D. E. Vance & J. Vance. Amsterdam: Elsevier.
  29. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463–5467.[CrossRef]
    [Google Scholar]
  31. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). Vector plasmids for in vivo and in vitro manipulations of Gram-negative bacteria. In Molecular Genetics of the Bacteria–Plant Interaction, pp. 98–106. Edited by A. Pühler. Heidelberg: Springer.
  32. Sistrom, W. R. ( 1962; ). The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides. J Gen Microbiol 28, 607–616.[CrossRef]
    [Google Scholar]
  33. Sohlenkamp, C., de Rudder, K. E. E., Röhrs, V., López-Lara, I. M. & Geiger, O. ( 2000; ). Cloning and characterization of the gene for phosphatidylcholine synthase. J Biol Chem 275, 18919–18925.[CrossRef]
    [Google Scholar]
  34. Sohlenkamp, C., López-Lara, I. M. & Geiger, O. ( 2003; ). Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42, 115–162.[CrossRef]
    [Google Scholar]
  35. Spaink, H. P., Okker, R. J. H., Wijffelman, C. A., Pees, E. & Lugtenberg, B. J. J. ( 1987; ). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9, 29–37.
    [Google Scholar]
  36. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. ( 1990; ). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60–89.
    [Google Scholar]
  37. Tahara, Y., Yamashita, T., Sogabe, A. & Ogawa, Y. ( 1994; ). Isolation and characterization of Zymomonas mobilis mutant defective in phosphatidylethanolamine N-methyltransferase. J Gen Appl Microbiol 40, 389–396.[CrossRef]
    [Google Scholar]
  38. Taniguchi, S., Morikawa, S., Hayashi, H., Fujii, K., Mori, K., Fujiwara, M. & Fujiwara, M. ( 1986; ). Effects of Ca2+ on ethanolaminephosphotransferase and cholinephosphotransferase in rabbit platelets. J Biochem 100, 485–491.
    [Google Scholar]
  39. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  40. Vincent, J. M. ( 1970; ). A Manual for the Practical Study of Root-Nodule Bacteria. International Biological Program Handbook No. 15. Oxford: Blackwell Scientific Publications.
  41. Wilderman, P. J., Vasil, A. I., Martin, W. E., Murphy, R. C. & Vasil, M. L. ( 2002; ). Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway. J Bacteriol 184, 4792–4799.[CrossRef]
    [Google Scholar]
  42. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26522-0
Loading
/content/journal/micro/10.1099/mic.0.26522-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error