1887

Abstract

To investigate pathogenicity and the evolutionary divergence of the genus, the effect of pathogenic yersiniae on the model organism was studied. Three strains of , including a strain lacking pMT1, caused blockage and death of ; one strain, lacking the haemin storage () locus, caused no effect. Similarly, 15 strains of caused no effect. Strains of showed different levels of pathogenicity. The majority of strains (76 %) caused no discernible effect; 5 % caused a weak infection, 9·5 % an intermediate infection, and 9·5 % a severe infection. There was no consistent relationship between serotype and severity of infection; nor was there any relationship between strains causing infection of and those able to form a biofilm on an abiotic surface. Electron microscope and cytochemical examination of infected worms indicated that the infection phenotype is a result of biofilm formation on the head of the worm. Seven transposon mutants of strain YPIII pIB1 were completely or partially attenuated; mutated genes included genes encoding proteins involved in haemin storage and lipopolysaccharide biosynthesis. A screen of 15 defined mutants identified four where mutation caused (complete) resistance to infection by YPIII pIB1. These mutants, , , and the dauer pathway gene , also exhibit altered binding of lectins to the nematode surface. This suggests that biofilm formation on a biotic surface is an interactive process involving both bacterial and invertebrate control mechanisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26475-0
2003-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493221.html?itemId=/content/journal/micro/10.1099/mic.0.26475-0&mimeType=html&fmt=ahah

References

  1. Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A. & Carniel, E. ( 1999; ). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96, 14043–14048.[CrossRef]
    [Google Scholar]
  2. Atkinson, S., Throup, J. P., Stewart, G. S. A. B. & Williams, P. ( 1999; ). A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33, 1267–1277.
    [Google Scholar]
  3. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. ( 1995; ). Microbial biofilms. Annu Rev Microbiol 49, 711–745.[CrossRef]
    [Google Scholar]
  4. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  5. Couillault, C. & Ewbank, J. J. ( 2002; ). Diverse bacteria are pathogens of Caenorhabditis elegans. Infect Immun 70, 4705–4707.[CrossRef]
    [Google Scholar]
  6. Darby, C. & Falkow, S. ( 2001; ). Mimicry of a G protein mutation by pertussis toxin expression in transgenic Caenorhabditis elegans. Infect Immun 69, 6271–6275.[CrossRef]
    [Google Scholar]
  7. Darby, C., Cosma, C. L., Thomas, J. H. & Manoil, C. ( 1999; ). Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96, 15202–15207.[CrossRef]
    [Google Scholar]
  8. Darby, C., Hsu, J. W., Ghori, N. & Falkow, S. ( 2002; ). Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417, 243–244.[CrossRef]
    [Google Scholar]
  9. Deng, W., Burland, V., Plunkett, G., III & 18 other authors ( 2002; ). Genome sequence of Yersinia pestis KIM. J Bacteriol 184, 4601–4611.[CrossRef]
    [Google Scholar]
  10. Drenkard, E. & Ausubel, F. M. ( 2002; ). Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740–743.[CrossRef]
    [Google Scholar]
  11. Garsin, D. A., Sifri, C. D., Mylonakis, E., Qin, X., Singh, K. V., Murray, B. E., Calderwood, S. B. & Ausubel, F. M. ( 2001; ). A simple host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A 98, 10892–10897.[CrossRef]
    [Google Scholar]
  12. Gerke, C., Kraft, A., Sussmuth, R., Schweitzer, O. & Gotz, F. ( 1998; ). Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 273, 18586–18593.[CrossRef]
    [Google Scholar]
  13. Grenache, D. G., Caldicott, I., Albert, P. S., Riddle, D. L. & Politz, S. M. ( 1996; ). Environmental induction and genetic control of surface antigen switching in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 93, 12388–12393.[CrossRef]
    [Google Scholar]
  14. Groisman, E. A. ( 2001; ). The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183, 1835–1842.[CrossRef]
    [Google Scholar]
  15. Hinnebusch, B. J., Rudolph, A. E., Cherepanov, P., Dixon, J. E., Schwan, T. G. & Forsberg, A. ( 2002; ). Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733–735.[CrossRef]
    [Google Scholar]
  16. Hodgkin, J., Edgley, M., Riddle, D. L. & Albertson, D. G. ( 1988; ). Appendix 4: genetics. In The Nematode Caenorhabditis elegans, pp. 491–584. Edited by W. B. Wood. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  17. Hodgkin, J., Kuwabara, P. E. & Corneliussen, B. ( 2000; ). A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol 10, 1615–1618.[CrossRef]
    [Google Scholar]
  18. Hogan, D. A. & Kolter, R. ( 2002; ). Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296, 2229–2232.[CrossRef]
    [Google Scholar]
  19. Karlyshev, A. V., Pallen, M. J. & Wren, B. W. ( 2000; ). Single-primer PCR procedure for rapid identification of transposon insertion sites. Biotechniques 28, 1078, 1080, 1082.
    [Google Scholar]
  20. Karlyshev, A. V., Oyston, P. C., Williams, K., Clark, G. C., Titball, R. W., Winzeler, E. A. & Wren, B. W. ( 2001; ). Application of high-density array-based signature-tagged mutagenesis to discover novel Yersinia virulence-associated genes. Infect Immun 69, 7810–7819.[CrossRef]
    [Google Scholar]
  21. Kurz, C. L. & Ewbank, J. J. ( 2000; ). Caenorhabditis elegans for the study of host-pathogen interactions. Trends Microbiol 8, 142–144.[CrossRef]
    [Google Scholar]
  22. Lewis, J. A. & Fleming, J. T. ( 1995; ). Basic culture methods. In Caenorhabditis elegans: Modern Biological Analysis of an Organism, pp. 3–29. Edited by H. F. Epstein & D. C. Shakes. New York: Academic Press.
  23. Link, C. D., Silverman, M. A., Breen, M., Watt, K. E. & Dames, S. A. ( 1992; ). Characterization of Caenorhabditis elegans lectin-binding mutants. Genetics 131, 867–881.
    [Google Scholar]
  24. Mendoza De Gives, P. M., Davies, K. G., Clark, S. J. & Behnke, J. M. ( 1999; ). Predatory behaviour of trapping fungi against srf mutants of Caenorhabditis elegans and different plant and animal parasitic nematodes. Parasitology 119, 95–104.[CrossRef]
    [Google Scholar]
  25. Naktin, J. & Beavis, K. G. ( 1999; ). Yersinia enterocolitica and Yersinia pseudotuberculosis. Clin Lab Med 19, 523–536, vi.
    [Google Scholar]
  26. Nesper, J., Lauriano, C. M., Klose, K. E., Kapfhammer, D., Kraiss, A. & Reidl, J. ( 2001; ). Characterization of Vibrio cholerae O1 El Tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun 69, 435–445.[CrossRef]
    [Google Scholar]
  27. O'Quinn, A. L., Weiegand, E. M. & Jeddelsh, J. A. ( 2001; ). Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis. Cell Microbiol 3, 381–393.[CrossRef]
    [Google Scholar]
  28. O'Toole, G. A. & Kolter, R. ( 1998; ). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28, 449–461.[CrossRef]
    [Google Scholar]
  29. Parkhill, J., Wren, B. W., Thomson, N. R. & 32 other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  30. Perry, R. D. & Fetherston, J. D. ( 1997; ). Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev 10, 35–66.
    [Google Scholar]
  31. Politz, S. M., Philipp, M., Estevez, M., O'Brien, P. J. & Chin, K. J. ( 1990; ). Genes that can be mutated to unmask hidden antigenic determinants in the cuticle of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 87, 2901–2905.[CrossRef]
    [Google Scholar]
  32. Riley, G. & Toma, S. ( 1989; ). Detection of pathogenic Yersinia enterocolitica by using Congo red-magnesium oxalate agar medium. J Clin Microbiol 27, 213–214.
    [Google Scholar]
  33. Singh, P. K., Parsek, M. R., Greenberg, E. P. & Welsh, M. J. ( 2002; ). A component of innate immunity prevents bacterial biofilm development. Nature 417, 552–555.[CrossRef]
    [Google Scholar]
  34. Solano, C., Garcia, B., Valle, J., Berasain, C., Ghigo, J. M., Gamazo, C. & Lasa, I. ( 2002; ). Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43, 793–808.[CrossRef]
    [Google Scholar]
  35. Strauss, E. ( 2000; ). Microbiology. Simple hosts may help reveal how bacteria infect cells. Science 290, 2245–2247.[CrossRef]
    [Google Scholar]
  36. Sulston, J. E. & Horvitz, H. R. ( 1977; ). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56, 110–156.[CrossRef]
    [Google Scholar]
  37. Tan, M. W., Rahme, L. G., Steinberg, J. A., Tompkins, R. G. & Ansubel, F. M. ( 1999; ). Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A 96, 2408–2413.[CrossRef]
    [Google Scholar]
  38. Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S. & Greenberg, E. P. ( 2001; ). Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864.[CrossRef]
    [Google Scholar]
  39. Yildiz, F. H. & Schoolnik, G. K. ( 1999; ). Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U S A 96, 4028–4033.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26475-0
Loading
/content/journal/micro/10.1099/mic.0.26475-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error