1887

Abstract

The P signal transduction proteins GlnB and GlnK are uridylylated/deuridylylated in response to the intracellular glutamine level, the primary signal of the cellular nitrogen status. Furthermore, GlnB was shown to be allosterically regulated by 2-oxoglutarate, and thus GlnB was suggested to integrate signals of the cellular carbon and nitrogen status. Receptors of GlnB signal transduction in are the NtrB/NtrC two-component system and GlnE, an enzyme which adenylylates/deadenylylates glutamine synthetase. In this study, the authors investigated the effect of different carbon sources on the expression of the NtrC-dependent genes and and on the uridylylation status of GlnB and GlnK. With glutamine as nitrogen source, high levels of and expression were obtained when glucose was used as carbon source, but expression was strongly decreased when the cells were grown with poor carbon sources or when cAMP was present. This response correlated with the uridylylation status of GlnB, suggesting that the carbon/cAMP effect was mediated through GlnB uridylylation, a conclusion that was confirmed by mutants of the P signalling pathway. When glutamine was replaced by low concentrations of ammonium as nitrogen source, neither expression nor GlnB uridylylation responded to the carbon source or to cAMP. Furthermore, glutamine synthetase could be rapidly adenylylated by the external addition of glutamine; however, this occurred only when cells were grown in the presence of cAMP, not in its absence. Together, these results suggest that poor carbon sources, through cAMP signalling, favour glutamine uptake. The cellular glutamine signal is then transduced by uridylyltransferase and GlnB to modulate NtrC-dependent gene expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26449-0
2003-08-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492163.html?itemId=/content/journal/micro/10.1099/mic.0.26449-0&mimeType=html&fmt=ahah

References

  1. Adler S. P., Purich D., Stadtman E. R.. 1975; Cascade control of Escherichia coli glutamine synthetase: properties of the PII regulatory protein and the uridylyltransferase-uridylylremoving enzyme. J Biol Chem250:6264–6272
    [Google Scholar]
  2. Arcondeguy T., Jack R., Merrick M.. 2001; PII signal transduction proteins: pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev65:80–105
    [Google Scholar]
  3. Atkinson M. R., Ninfa A. J.. 1998; Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli . Mol Microbiol29:431–447
    [Google Scholar]
  4. Atkinson M. A., Blauwkamp T. A., Bondarenko V., Studistky V., Ninfa A. J.. 2002a; Activation of the glnA , glnK and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvation. J Bacteriol184:5358–5363
    [Google Scholar]
  5. Atkinson M. A., Blauwkamp T. A., Ninfa A. J.. 2002b; Context-dependent functions of the PII and GlnK signal transduction proteins in Escherichia coli . J Bacteriol184:5364–5375
    [Google Scholar]
  6. Backman K., Chen Y.-M., Magasanik B.. 1981; Physical and genetic characterization of the glnA-glnG region of the Escherichia coli chromosome. Proc Natl Acad Sci U S A78:3743–3747
    [Google Scholar]
  7. Blauwkamp T. A., Ninfa A. J.. 2002a; Nac-mediated repression of the serA promoter of Escherichia coli . Mol Microbiol45:351–363
    [Google Scholar]
  8. Blauwkamp T. A., Ninfa A. J.. 2002b; Physiological role of the GlnK signal transduction protein of Escherichia coli : survival of nitrogen starvation. Mol Microbiol46:203–214
    [Google Scholar]
  9. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  10. Bueno R., Pahel G., Magasanik B.. 1985; Role of glnB and glnD gene products in the regulation of the glnALG operon of Escherichia coli . J Bacteriol164:816–822
    [Google Scholar]
  11. Claverie-Martin F., Magasanik B.. 1991; Role of the integration host factor in the regulation of the glnH p2 promoter of Escherichia coli . Proc Natl Acad Sci U S A88:1631–1635
    [Google Scholar]
  12. Forchhammer K., Hedler A., Strobel H., Weiss V.. 1999; Heterotrimerization of PII-like signaling proteins: implications for PII-mediated signal transduction systems. Mol Microbiol33:338–349
    [Google Scholar]
  13. Jaggi R., Ybarlucea W., Chea E., Carr P. D., Edwards K. J., Ollis D. L., Vasudevan S. G.. 1996; The role of the T-loop of the signal transduction protein PII from Escherichia coli . FEBS Lett391:223–228
    [Google Scholar]
  14. Jaggi R., van Heeswijk W. C., Westerhoff H. V., Ollis D. L., Vasudevan S. G.. 1997; The two opposing activities of adenylyltransferase reside in distinct homologous domains, with intramolecular signal transduction. EMBO J16:5562–5571
    [Google Scholar]
  15. Jiang P., Ninfa A. J.. 1999; Regulation of the autophosphorylation of Escherichia coli nitrogen regulator II by the PII signal transduction protein. J Bacteriol181:1906–1911
    [Google Scholar]
  16. Jiang P., Peliska J. A., Ninfa A. J.. 1998a; Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein. Biochemistry37:12782–12794
    [Google Scholar]
  17. Jiang P., Peliska J. A., Ninfa A. J.. 1998b; Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli . Biochemistry37:12795–12801
    [Google Scholar]
  18. Jiang P., Peliska J. A., Ninfa A. J.. 1998c; The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. Biochemistry37:12802–12810
    [Google Scholar]
  19. Liu J., Magasanik B.. 1993; The glnB region of the Escherichia coli chromosome. J Bacteriol175:7441–7449
    [Google Scholar]
  20. Magasanik B.. others 1996; Regulation of nitrogen utilization. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp1344–1356 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
  21. McFall E., Newman E. B.. others 1996; Amino acids as carbon sources. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp358–379 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
  22. Ninfa A. J., Atkinson M. R.. 2000; PII signal transduction proteins. Trends Microbiol8:172–179
    [Google Scholar]
  23. Pahel G., Rothstein D. M., Magasanik B.. 1982; Complex glnA-glnL-glnG operon of Escherichia coli . Proc Natl Acad Sci U S A76:4544–4548
    [Google Scholar]
  24. Pioszak A. A., Jiang P., Ninfa A. J.. 2000; The Escherichia coli PII signal transduction protein regulates the activities of the two-component system transmitter protein NRII by direct interaction with the kinase domain of the transmitter mode. Biochemistry39:13450–13461
    [Google Scholar]
  25. Reitzer L. J.. others 1996; Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, l-alanine and d-alanine. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp391–407 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
  26. Reitzer L. J., Magasanik B.. 1985; Expression of glnA in Escherichia coli is regulated by tandem promoters. Proc Natl Acad Sci U S A82:1979–1983
    [Google Scholar]
  27. Rhee S. G., Chock P. B., Stadtman E. R.. 1985; Glutamine synthetase from Escherichia coli . Methods Enzymol113:213–241
    [Google Scholar]
  28. Rippka R.. 1988; Isolation and purification of cyanobacteria. Methods Enzymol167:3–27
    [Google Scholar]
  29. Saier M. H., Ramseier T. M., Reizer J.. others 1996; Regulation of carbon utilization. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp1325–1343 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
  30. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  31. Shapiro B. M., Stadtman E. R.. 1968; 5′-Adenylyl- O -tyrosine: the novel phosphodiester residue of adenylylated glutamine synthetase from Escherichia coli . J Biol Chem243:3769–3771
    [Google Scholar]
  32. Son H. S., Rhee S. G.. 1987; Cascade control of Escherichia coli glutamine synthetase. J Biol Chem262:8690–8695
    [Google Scholar]
  33. Stadtman E. R.. 1990; Discovery of glutamine synthetase cascade. Methods Enzymol182:793–809
    [Google Scholar]
  34. Stadtman E. R., Smyrniotis P. Z., Davis N. J., Wittenberger M. E.. 1979; Enzymatic procedures for determining the average state of adenylylation of Escherichia coli glutamine synthetase. Anal Biochem95:275–285
    [Google Scholar]
  35. Strobel H.. 1998; Die Rolle von GlnY, PII und GlnK bei der Stimulierung der regulierten Dephosphorylierung von NtrC-P und Kontrolle der Glutaminsynthetase Aktivität PhD thesis Universität Konstanz;
  36. Tian Z.-X., Li Q.-S., Buck M., Kolb A., Wang Y.-P.. 2001; The CRP-cAMP complex and downregulation of the glnA p2 promoter provides a novel regulatory linkage between carbon metabolism and nitrogen assimilation in Escherichia coli . Mol Microbiol41:911–924
    [Google Scholar]
  37. van Heeswijk W. C., Hoving S., Molenaar D., Stegeman B., Kahn D., Westerhoff H. V.. 1996; An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli . Mol Microbiol21:133–146
    [Google Scholar]
  38. Weiner J. H., Heppel L. A.. 1971; A binding protein for glutamine and its relation to active transport in Escherichia coli . J Biol Chem246:6933–6941
    [Google Scholar]
  39. Willis R. C., Furlong C. E.. 1975; Interactions of a glutamate-aspartate binding protein with the glutamate transport system of Escherichia coli . J Biol Chem250:2581–2586
    [Google Scholar]
  40. Willis R. C., Iwata K. K., Furlong C. E.. 1975; Regulation of glutamine transport in Escherichia coli . J Bacteriol122:1032–1027
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26449-0
Loading
/content/journal/micro/10.1099/mic.0.26449-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error