1887

Abstract

The P signal transduction proteins GlnB and GlnK are uridylylated/deuridylylated in response to the intracellular glutamine level, the primary signal of the cellular nitrogen status. Furthermore, GlnB was shown to be allosterically regulated by 2-oxoglutarate, and thus GlnB was suggested to integrate signals of the cellular carbon and nitrogen status. Receptors of GlnB signal transduction in are the NtrB/NtrC two-component system and GlnE, an enzyme which adenylylates/deadenylylates glutamine synthetase. In this study, the authors investigated the effect of different carbon sources on the expression of the NtrC-dependent genes and and on the uridylylation status of GlnB and GlnK. With glutamine as nitrogen source, high levels of and expression were obtained when glucose was used as carbon source, but expression was strongly decreased when the cells were grown with poor carbon sources or when cAMP was present. This response correlated with the uridylylation status of GlnB, suggesting that the carbon/cAMP effect was mediated through GlnB uridylylation, a conclusion that was confirmed by mutants of the P signalling pathway. When glutamine was replaced by low concentrations of ammonium as nitrogen source, neither expression nor GlnB uridylylation responded to the carbon source or to cAMP. Furthermore, glutamine synthetase could be rapidly adenylylated by the external addition of glutamine; however, this occurred only when cells were grown in the presence of cAMP, not in its absence. Together, these results suggest that poor carbon sources, through cAMP signalling, favour glutamine uptake. The cellular glutamine signal is then transduced by uridylyltransferase and GlnB to modulate NtrC-dependent gene expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26449-0
2003-08-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492163.html?itemId=/content/journal/micro/10.1099/mic.0.26449-0&mimeType=html&fmt=ahah

References

  1. Adler, S. P., Purich, D. & Stadtman, E. R. ( 1975; ). Cascade control of Escherichia coli glutamine synthetase: properties of the PII regulatory protein and the uridylyltransferase-uridylylremoving enzyme. J Biol Chem 250, 6264–6272.
    [Google Scholar]
  2. Arcondeguy, T. Jack R. & Merrick, M. ( 2001; ). PII signal transduction proteins: pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65, 80–105.[CrossRef]
    [Google Scholar]
  3. Atkinson, M. R. & Ninfa, A. J. ( 1998; ). Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli. Mol Microbiol 29, 431–447.[CrossRef]
    [Google Scholar]
  4. Atkinson, M. A., Blauwkamp, T. A., Bondarenko, V., Studistky, V. & Ninfa, A. J. ( 2002a; ). Activation of the glnA, glnK and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvation. J Bacteriol 184, 5358–5363.[CrossRef]
    [Google Scholar]
  5. Atkinson, M. A., Blauwkamp, T. A. & Ninfa, A. J. ( 2002b; ). Context-dependent functions of the PII and GlnK signal transduction proteins in Escherichia coli. J Bacteriol 184, 5364–5375.[CrossRef]
    [Google Scholar]
  6. Backman, K., Chen, Y.-M. & Magasanik, B. ( 1981; ). Physical and genetic characterization of the glnA-glnG region of the Escherichia coli chromosome. Proc Natl Acad Sci U S A 78, 3743–3747.[CrossRef]
    [Google Scholar]
  7. Blauwkamp, T. A. & Ninfa, A. J. ( 2002a; ). Nac-mediated repression of the serA promoter of Escherichia coli. Mol Microbiol 45, 351–363.[CrossRef]
    [Google Scholar]
  8. Blauwkamp, T. A. & Ninfa, A. J. ( 2002b; ). Physiological role of the GlnK signal transduction protein of Escherichia coli: survival of nitrogen starvation. Mol Microbiol 46, 203–214.[CrossRef]
    [Google Scholar]
  9. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  10. Bueno, R., Pahel, G. & Magasanik, B. ( 1985; ). Role of glnB and glnD gene products in the regulation of the glnALG operon of Escherichia coli. J Bacteriol 164, 816–822.
    [Google Scholar]
  11. Claverie-Martin, F. & Magasanik, B. ( 1991; ). Role of the integration host factor in the regulation of the glnHp2 promoter of Escherichia coli. Proc Natl Acad Sci U S A 88, 1631–1635.[CrossRef]
    [Google Scholar]
  12. Forchhammer, K., Hedler, A., Strobel, H. & Weiss, V. ( 1999; ). Heterotrimerization of PII-like signaling proteins: implications for PII-mediated signal transduction systems. Mol Microbiol 33, 338–349.[CrossRef]
    [Google Scholar]
  13. Jaggi, R., Ybarlucea, W., Chea, E., Carr, P. D., Edwards, K. J., Ollis, D. L. & Vasudevan, S. G. ( 1996; ). The role of the T-loop of the signal transduction protein PII from Escherichia coli. FEBS Lett 391, 223–228.[CrossRef]
    [Google Scholar]
  14. Jaggi, R., van Heeswijk, W. C., Westerhoff, H. V., Ollis, D. L. & Vasudevan, S. G. ( 1997; ). The two opposing activities of adenylyltransferase reside in distinct homologous domains, with intramolecular signal transduction. EMBO J 16, 5562–5571.[CrossRef]
    [Google Scholar]
  15. Jiang, P. & Ninfa, A. J. ( 1999; ). Regulation of the autophosphorylation of Escherichia coli nitrogen regulator II by the PII signal transduction protein. J Bacteriol 181, 1906–1911.
    [Google Scholar]
  16. Jiang, P., Peliska, J. A. & Ninfa, A. J. ( 1998a; ). Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein. Biochemistry 37, 12782–12794.[CrossRef]
    [Google Scholar]
  17. Jiang, P., Peliska, J. A. & Ninfa, A. J. ( 1998b; ). Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli. Biochemistry 37, 12795–12801.[CrossRef]
    [Google Scholar]
  18. Jiang, P., Peliska, J. A. & Ninfa, A. J. ( 1998c; ). The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. Biochemistry 37, 12802–12810.[CrossRef]
    [Google Scholar]
  19. Liu, J. & Magasanik, B. ( 1993; ). The glnB region of the Escherichia coli chromosome. J Bacteriol 175, 7441–7449.
    [Google Scholar]
  20. Magasanik, B. ( 1996; ). Regulation of nitrogen utilization. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1344–1356. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  21. McFall, E. & Newman, E. B. ( 1996; ). Amino acids as carbon sources. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 358–379. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  22. Ninfa, A. J. & Atkinson, M. R. ( 2000; ). PII signal transduction proteins. Trends Microbiol 8, 172–179.[CrossRef]
    [Google Scholar]
  23. Pahel, G., Rothstein, D. M. & Magasanik, B. ( 1982; ). Complex glnA-glnL-glnG operon of Escherichia coli. Proc Natl Acad Sci U S A 76, 4544–4548.
    [Google Scholar]
  24. Pioszak, A. A., Jiang, P. & Ninfa, A. J. ( 2000; ). The Escherichia coli PII signal transduction protein regulates the activities of the two-component system transmitter protein NRII by direct interaction with the kinase domain of the transmitter mode. Biochemistry 39, 13450–13461.[CrossRef]
    [Google Scholar]
  25. Reitzer, L. J. ( 1996; ). Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, l-alanine and d-alanine. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 391–407. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  26. Reitzer, L. J. & Magasanik, B. ( 1985; ). Expression of glnA in Escherichia coli is regulated by tandem promoters. Proc Natl Acad Sci U S A 82, 1979–1983.[CrossRef]
    [Google Scholar]
  27. Rhee, S. G., Chock, P. B. & Stadtman, E. R. ( 1985; ). Glutamine synthetase from Escherichia coli. Methods Enzymol 113, 213–241.
    [Google Scholar]
  28. Rippka, R. ( 1988; ). Isolation and purification of cyanobacteria. Methods Enzymol 167, 3–27.
    [Google Scholar]
  29. Saier, M. H., Ramseier, T. M. & Reizer, J. ( 1996; ). Regulation of carbon utilization. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1325–1343. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  30. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  31. Shapiro, B. M. & Stadtman, E. R. ( 1968; ). 5′-Adenylyl-O-tyrosine: the novel phosphodiester residue of adenylylated glutamine synthetase from Escherichia coli. J Biol Chem 243, 3769–3771.
    [Google Scholar]
  32. Son, H. S. & Rhee, S. G. ( 1987; ). Cascade control of Escherichia coli glutamine synthetase. J Biol Chem 262, 8690–8695.
    [Google Scholar]
  33. Stadtman, E. R. ( 1990; ). Discovery of glutamine synthetase cascade. Methods Enzymol 182, 793–809.
    [Google Scholar]
  34. Stadtman, E. R., Smyrniotis, P. Z., Davis, N. J. & Wittenberger, M. E. ( 1979; ). Enzymatic procedures for determining the average state of adenylylation of Escherichia coli glutamine synthetase. Anal Biochem 95, 275–285.[CrossRef]
    [Google Scholar]
  35. Strobel, H. ( 1998; ). Die Rolle von GlnY, PII und GlnK bei der Stimulierung der regulierten Dephosphorylierung von NtrC-P und Kontrolle der Glutaminsynthetase Aktivität. PhD thesis, Universität Konstanz.
  36. Tian, Z.-X., Li, Q.-S., Buck, M., Kolb, A. & Wang, Y.-P. ( 2001; ). The CRP-cAMP complex and downregulation of the glnAp2 promoter provides a novel regulatory linkage between carbon metabolism and nitrogen assimilation in Escherichia coli. Mol Microbiol 41, 911–924.
    [Google Scholar]
  37. van Heeswijk, W. C., Hoving, S., Molenaar, D., Stegeman, B., Kahn, D. & Westerhoff, H. V. ( 1996; ). An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol Microbiol 21, 133–146.[CrossRef]
    [Google Scholar]
  38. Weiner, J. H. & Heppel, L. A. ( 1971; ). A binding protein for glutamine and its relation to active transport in Escherichia coli. J Biol Chem 246, 6933–6941.
    [Google Scholar]
  39. Willis, R. C. & Furlong, C. E. ( 1975; ). Interactions of a glutamate-aspartate binding protein with the glutamate transport system of Escherichia coli. J Biol Chem 250, 2581–2586.
    [Google Scholar]
  40. Willis, R. C., Iwata, K. K. & Furlong, C. E. ( 1975; ). Regulation of glutamine transport in Escherichia coli. J Bacteriol 122, 1032–1027.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26449-0
Loading
/content/journal/micro/10.1099/mic.0.26449-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error