1887

Abstract

The role of growth factors for the motility and chemotaxis of the fish pathogen was determined. Cells of were chemotactic to serine in the temperature range 5–25 °C and in 0·8–2·7 % NaCl. The chemotactic response was significantly higher at 25 °C than at 5 or 15 °C. Growth in medium with 1·5 % NaCl gave a higher response than growth with 3 % NaCl; when the salinity of the chemotaxis buffer was raised, the chemotactic response was reduced. The role of starvation was also studied; showed a high chemotactic response after starvation for 2 and 8 days. Motility and chemotaxis are important virulence factors for this bacterium. Not only was the ability to perform chemotactic motility maintained after starvation, but also it was shown that starvation does not interfere with the ability of the organism to cause infection in rainbow trout after a bath challenge. The swimming speed was reduced at lower temperatures. Within the range of salinity and starvation studied, the motile cells swam with the same velocity, indicating that under all the examined conditions has a functional flagellum and rotates it with constant speed. Phenamil, a specific inhibitor of Na-driven flagella, reduced the motility of both starved and non-starved cells of indicating that, in both cases, a Na motive force drives the flagellum.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26379-0
2004-05-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501283.html?itemId=/content/journal/micro/10.1099/mic.0.26379-0&mimeType=html&fmt=ahah

References

  1. Adler J.. 1973; A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol74:77–79[CrossRef]
    [Google Scholar]
  2. Amsler C. D., Cho M., Matsumura P.. 1993; Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J Bacteriol175:6238–6244
    [Google Scholar]
  3. Atsumi T., Sugiyama S., Cragoe E. J., Jr, Imae Y.. 1990; Specific inhibition of the Na+-driven flagellar motors of alkalophillic Bacillus strains by the amiloride analog phenamil. J Bacteriol172:1634–1639
    [Google Scholar]
  4. Atsumi T., McCarter L., Imae Y.. 1992; Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature355:182–184[CrossRef]
    [Google Scholar]
  5. Austin B., Austin D. A.. 1999; Bacterial Fish Pathogens: Disease of Farmed and Wild Fish, 3rd edn. pp.238–240 Chichester: Praxis;
  6. Binnerup S. J., Jensen D. F., Thordal-Christensen H., Sørensen J.. 1993; Detection of viable, but non-culturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS Microbiol Ecol12:97–105[CrossRef]
    [Google Scholar]
  7. Biosca E. G., Amaro C., Marco-Noales E., Oliver J. D.. 1996; Effect of low temperature on starvation-survival of the eel pathogen Vibrio vulnificus biotype 2. Appl Environ Microbiol62:450–455
    [Google Scholar]
  8. Blackburn N., Fenchel T., Mitchell J.. 1998; Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science282:2254–2256[CrossRef]
    [Google Scholar]
  9. Bordas M. A., Balebona M. C., Rodriguez-Maroto J. M., Borrego J. J., Morinigo M. A.. 1998; Chemotaxis of pathogenic Vibrio strains towards mucus surfaces of gilt-head sea bream (Sparus aurata L.). . Appl Environ Microbiol64:1573–1575
    [Google Scholar]
  10. Chernyak B. V., Dibrov P. A., Glagolev A. N., Sherman M. Y., Skulachev V. P.. 1983; A novel type of energetics in a marine alkali-tolerant bacterium ΔμNa-driven motility and sodium cycle. FEMS Microbiol Lett164:38–42[CrossRef]
    [Google Scholar]
  11. Givskov M., Eberl L., Møller S., Poulsen L. K., Molin S.. 1994; Responses to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection, cell-shape, and macromolecular content. J Bacteriol176:4816–4824
    [Google Scholar]
  12. Hase C. C., Mekalanos J. J.. 1999; Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A96:3183–3187[CrossRef]
    [Google Scholar]
  13. Hazen T. C., Dimock R. V., Esch G. W., Mansfield A., Raker M. L.. 1984; Chemotactic behaviour of Aeromonas hydrophila. Curr Microbiol10:13–18[CrossRef]
    [Google Scholar]
  14. Hoff K. A.. 1989; Survival of Vibrio anguillarum and Vibrio salmonicida at different salinities. Appl Environ Microbiol55:1775–1786
    [Google Scholar]
  15. Kawagishi I., Maekawa Y., Atsumi T., Homma M., Imae Y.. 1995; Isolation of the polar and lateral flagellum-defective mutants in V. alginolyticus and identification of their flagellar driving energy sources. J Bacteriol177:5158–5160
    [Google Scholar]
  16. Kjelleberg S., Hermansson M., Mården P., Jones G. W.. 1987; The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annu Rev Microbiol41:25–49[CrossRef]
    [Google Scholar]
  17. Kojima S., Yamamoto K., Kawagashi I., Homma M.. 1999a; The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. J Bacteriol181:1927–1930
    [Google Scholar]
  18. Kojima S., Asai Y., Atsumi T., Kawagashi I., Homma M.. 1999b; Na+-driven flagellar motor resistant to phenamil, an amiloride analog, caused by mutations in putative channel components. J Mol Biol285:1537–1547[CrossRef]
    [Google Scholar]
  19. Larsen J. L., Mellergaard S.. 1981; Microbiological and hygienic problems in marine aquaculture: furunculosis and vibriosis in rainbow trout (Salmo gairdneri. L.). Bull Eur Assoc Fish Pathol1:29–31
    [Google Scholar]
  20. Larsen J. L., Pedersen K., Dalsgaard I.. 1994; Vibrio anguillarum serovars associated with vibriosis in fish. J Fish Dis17:259–267[CrossRef]
    [Google Scholar]
  21. Larsen M. H., Larsen J. L., Olsen J. E.. 2001; Chemotaxis of Vibrio anguillarum to fish mucus: role of the origin of the fish mucus, the fish species and the serogroup of the pathogen. FEMS Microbiol Ecol38:77–80[CrossRef]
    [Google Scholar]
  22. Maeda K., Imae Y., Shioi J. I., Oosawa F.. 1976; Effect of temperature on motility and chemotaxis of Escherichia coli. J Bacteriol127:1039–1046
    [Google Scholar]
  23. Magarinos B., Romalde J. L., Barja J. L., Toranzo A. E.. 1994; Evidence of a dormant but infective state of the fish pathogen Pasteurella piscicida in seawater and sediment. Appl Environ Microbiol60:180–186
    [Google Scholar]
  24. Malmcrona-Friberg K., Goodman A., Kjelleberg S.. 1990; Chemotactic responses of marine Vibrio sp. strain S14 (CCUG 15956) to low-molecular-weight substances under starvation and recovery conditions. Appl Environ Microbiol56:3699–3704
    [Google Scholar]
  25. McCarter L.. 2001; Polar flagellar motility of the Vibrionaeceae. Microbiol Mol Biol Rev65:445–462[CrossRef]
    [Google Scholar]
  26. McGee K., Hörstedt P., Milton D. L.. 1996; Identification and characterization of additional flagellin genes from Vibrio anguillarum. J Bacteriol178:5188–5198
    [Google Scholar]
  27. Miller J. B., Koshland D. E.. 1977; Membrane fluidity and chemotaxis: effects of temperature and membrane lipid composition on the swimming behavior of Salmonella typhimurium and Escherichia coli. J Mol Biol111:183–201[CrossRef]
    [Google Scholar]
  28. Milton D. L., O'Toole R., Hörstedt P., Wolf-Watz H.. 1996; Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol178:1310–1319
    [Google Scholar]
  29. Nelson D. R., Sadlowski Y., Eguchi M., Kjelleberg S.. 1997; The starvation-stress response of Vibrio (Listonella)anguillarum. Microbiology143:2305–2312[CrossRef]
    [Google Scholar]
  30. Norqvist A., Hagstrom A., Wolf-Watz H.. 1989; Protection of rainbow trout against vibriosis and furunculosis by the use of attenuated strains of Vibrio anguillarum. Appl Environ Microbiol55:1400–1405
    [Google Scholar]
  31. Nyström T., Flardh K., Kjelleberg S.. 1990; Responses to multiple-nutrient starvation in marine Vibrio sp. strain CCUG 15956. J Bacteriol172:7085–7097
    [Google Scholar]
  32. Ormonde P., Hörstedt P., O'Toole R., Milton D. L.. 2000; Role of motility in adherence to and invasion of a fish cell line by Vibrio anguillarum. J Bacteriol182:2326–2328[CrossRef]
    [Google Scholar]
  33. Östling J., Holmquist L., Flärdh K., Svenblad B., Jouper-Jaan Å., Kjelleberg S.. 1993; Starvation and recovery of Vibrio. In Starvation in BacteriaEdited by Kjelleberg S.. New York: Plenum;
    [Google Scholar]
  34. O'Toole R., Milton D. L., Wolf-Watz H.. 1996; Chemotactic motility is required for invasion of the host by the fish pathogen Vibrio anguillarum. Mol Microbiol19:625–637[CrossRef]
    [Google Scholar]
  35. O'Toole R., Lundberg S., Fredriksson S. A., Jansson A., Nilsson B., Wolf-Watz H.. 1999; The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J Bacteriol181:4308–4317
    [Google Scholar]
  36. Padan E., Krulwich T. A.. 2000; Sodium stress. In Bacterial Stress Responses pp.117–130Edited by Storz G., Hengge-Aronis R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Rahman M. H., Kawai K., Kusuda R.. 1997; Virulence of starved Aeromonas hydrophila to cyprinid fish. Fish Pathol32:163–168[CrossRef]
    [Google Scholar]
  38. Reed L. J., Muench H.. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg27:493–497
    [Google Scholar]
  39. Smigielski A. J., Wallace B. J., Marshall K. C.. 1989; Changes in membrane functions during short-term starvation of Vibrio fluvialis strain NCTC 11328. Arch Microbiol151:336–347[CrossRef]
    [Google Scholar]
  40. Spector M. P.. 1998; The starvation-stress response (SSR) of Salmonella. Adv Microb Physiol40:233–279
    [Google Scholar]
  41. Thar R., Blackburn N., Kühl M.. 2000; A new system for three-dimensional tracking of motile microorganisms. Appl Environ Microbiol66:2238–2242[CrossRef]
    [Google Scholar]
  42. Weast R. C., Astle M. J.. 1983; Table F40. In Handbook of Chemistry and Physics, 63rd edn. Boca Raton, FL: CRC Press;
    [Google Scholar]
  43. Wood J. M.. 1999; Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev63:230–262
    [Google Scholar]
  44. Yildiz F. H., Schoolnik G. K.. 1998; Role of rpoS in stress survival and virulence of Vibrio cholerae. J Bacteriol180:773–784
    [Google Scholar]
  45. Yoshida S., Sugiyama S., Hojo Y., Tokuda H., Imae Y.. 1990; Intracellular Na+ kinetically interferes with the rotation of the Na+-driven flagellar motors ofVibrio alginolyticus. J Biol Chem265:20346–20350
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26379-0
Loading
/content/journal/micro/10.1099/mic.0.26379-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error