1887

Abstract

Fungal laccase gene transcription is strongly induced by copper ions; notably, some laccase promoters contain multiple putative metal-responsive elements (MREs). Previously, it has been demonstrated that the laccase genes and are transcriptionally induced by copper, and several putative MREs were found in the promoter regions of these genes, which extend for about 400 nt upstream of the start codon (ATG). Identification of MRE sequences, which are protected by protein binding in the and promoter regions, has been achieved by footprinting analyses. Electromobility shift assays led to the evaluation of the ability of the identified MREs to bind protein(s), and the role of specific nucleotides of these elements in complex formation has also been analysed. The formation of complexes between analysed MREs and fungal proteins requires the absence of metal ions. Proteins extracted from fungus grown in copper-depleted medium are able to form complexes with MREs, whilst proteins extracted from fungus grown in copper-containing medium are able to form complexes only in the presence of a metal chelator. Moreover, copper-depleted proteins are unable to form complexes when copper or zinc ions are added. UV-cross-linking analyses led to the determination of the molecular masses of the MRE-binding proteins. In the promoter, a GC-rich region, homologous to the core binding site for transcription factor Sp1, decreases the binding affinity of the adjacent MRE, affecting its interactions with fungal protein factors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26360-0
2003-08-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492155.html?itemId=/content/journal/micro/10.1099/mic.0.26360-0&mimeType=html&fmt=ahah

References

  1. Andersen, R. D., Taplitz, S. J., Wong, S., Bristol, G., Larkin, B. & Herschman, H. R. ( 1987; ). Metal-dependent binding of a factor in vivo to the metal-responsive elements of the metallothionein 1 gene promoter. Mol Cell Biol 7, 3574–3581.
    [Google Scholar]
  2. Andersen, R. D., Taplitz, S. J., Oberbauer, A. M., Calame, K. L. & Herschman, H. R. ( 1990; ). Metal-dependent binding of a nuclear factor to the rat metallothionein-I promoter. Nucleic Acids Res 18, 6049–6055.[CrossRef]
    [Google Scholar]
  3. Averbeck, N. B., Borghouts, C., Hamann, A., Specke, V. & Osiewacz, H. D. ( 2001; ). Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora anserina. Mol Gen Genet 264, 604–612.[CrossRef]
    [Google Scholar]
  4. Carri, M. T., Galiazzo, F., Ciriolo, M. R. & Rotilio, G. ( 1991; ). Evidence for co-regulation of Cu, Zn superoxide dismutase and metallothionein gene expression in yeast through transcriptional control by copper via the ACE 1 factor. FEBS Lett 2278, 263–266.
    [Google Scholar]
  5. Collins, P. J. & Dobson, A. D. W. ( 1997; ). Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 63, 3444–3450.
    [Google Scholar]
  6. Culotta, V. C. & Hamer, D. H. ( 1989; ). Fine mapping of a mouse metallothionein gene metal response element. Mol Cell Biol 9, 1376–1380.
    [Google Scholar]
  7. Galhaup, C., Goller, S., Peterbauer, C. K., Strauss, J. & Haltrich, D. ( 2002; ). Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148, 2159–2169.
    [Google Scholar]
  8. Giardina, P., Cannio, R., Martirani, L., Marzullo, L., Palmieri, G. & Sannia, G. ( 1995; ). Cloning and sequencing of a laccase from the lignin degrading basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 61, 2408–2413.
    [Google Scholar]
  9. Giardina, P., Aurilia, V., Cannio, R., Marzullo, L., Amoresano, A., Siciliano, R., Pucci, P. & Sannia, G. ( 1996; ). The gene, protein, and glycan structures of laccase from Pleurotus ostreatus. Eur J Biochem 235, 508–515.[CrossRef]
    [Google Scholar]
  10. Giardina, P., Palmieri, G., Scaloni, A., Fontanella, B., Faraco, V., Cennamo, G. & Sannia, G. ( 1999; ). Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem J 341, 655–663.[CrossRef]
    [Google Scholar]
  11. Greco, M. A., Hrab, D. I., Magner, W. & Kosman, D. J. ( 1990; ). Cu,Zn superoxide dismutase and copper deprivation and toxicity in Saccharomyces cerevisiae. J Bacteriol 172, 317–325.
    [Google Scholar]
  12. Hagen, G., Uhrhammer, N. & Guilfoyle, T. J. ( 1988; ). Regulation of expression of an auxin-induced soybean sequence by cadmium. J Biol Chem 263, 6442–6446.
    [Google Scholar]
  13. Hamer, D. H. ( 1986; ). Metallothionein. Annu Rev Biochem 55, 913–951.[CrossRef]
    [Google Scholar]
  14. Hammel, K. ( 1995; ). Organopollutant degradation by ligninolytic fungi. In Microbial Transformation and Degradation of Toxic Organic Chemicals, pp. 331–346. Edited by L. Y. Young & C. E. Cerniglia. New York: Wiley-Liss.
  15. Hill, K. L., Li, H. H., Singer, J. & Merchant, S. ( 1991; ). Isolation and structural characterization of the Chlamydomonas reinhardtii gene for cytochrome c 6. Analysis of the kinetics and metal specificity of its copper-responsive expression. J Biol Chem 266, 15060–15067.
    [Google Scholar]
  16. Jin, P. & Ringertz, N. R. ( 1990; ). Cadmium induces transcription of proto-oncogenes c-jun and c-myc in rat L6 myoblasts. J Biol Chem 265, 14061–14064.
    [Google Scholar]
  17. Kägi, J. H. R. & Shäffer, A. ( 1988; ). Biochemistry of metallothionein. Biochemistry 27, 8509–8515.[CrossRef]
    [Google Scholar]
  18. Karahanian, E., Corsini, G., Lobos, S., & Vicunã, R. ( 1998; ). Structure and expression of a laccase gene from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta 1443, 65–74.[CrossRef]
    [Google Scholar]
  19. Kirk, T. K. & Farrell, R. L. ( 1987; ). Enzymatic ‘combustion’: the microbial degradation of lignin. Annu Rev Microbiol 41, 465–505.[CrossRef]
    [Google Scholar]
  20. Klonowska, A., Le Petit, J. & Tron, T. ( 2001; ). Enhancement of minor laccases production in the basidiomycete Marasmius quercophilus C30. FEMS Microbiol Lett 200, 25–30.[CrossRef]
    [Google Scholar]
  21. Koizumi, S., Suzuki, K., Ogra, Y., Yamada, H. & Otsuka, F. ( 1999; ). Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 259, 635–642.
    [Google Scholar]
  22. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  23. Mansur, M., Suarez, T., Fernández-Larrea, J. B., Brizuela, M. A. & González, A. E. ( 1997; ). Identification of a laccase gene family in the new lignin-degrading basidiomycete CECT 20197. Appl Environ Microbiol 63, 2637–2646.
    [Google Scholar]
  24. Mansur, M., Suárez, T. & González, A. E. ( 1998; ). Differential gene expression in the laccase gene family from basidiomycete I-62 (CECT 20197). Appl Environ Microbiol 64, 771–774.
    [Google Scholar]
  25. Merchant, S., Hill, K. & Howe, G. ( 1991; ). Dynamic interplay between two copper-titrating components in the transcriptional regulation of cyt. c 6. EMBO J 10, 1383–1389.
    [Google Scholar]
  26. Mueller, P. R., Salser, S. J. & Wold, B. ( 1988; ). Constitutive and metal-inducible protein : DNA interactions at the mouse metallothionein I promoter examined by in vivo and in vitro footprinting. Genes Dev 2, 412–427.[CrossRef]
    [Google Scholar]
  27. Muñoz, C., Guillen, F., Martinez, A. T. & Martinez, M. J. ( 1997; ). Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr Microbiol 34, 1–5.[CrossRef]
    [Google Scholar]
  28. Ogra, Y., Suzuki, K., Gong, P., Otsuka, F. & Koizumi, S. ( 2001; ). Negative regulatory role of Sp1 in metal responsive element-mediated transcriptional activation. J Biol Chem 276, 16534–16539.[CrossRef]
    [Google Scholar]
  29. Palmieri, G., Giardina, P., Bianco, C., Scaloni, A., Capasso, A. & Sannia, G. ( 1997; ). A novel white laccase from Pleurotus ostreatus. J Biol Chem 272, 31301–31307.[CrossRef]
    [Google Scholar]
  30. Palmieri, G., Giardina, P., Bianco, C., Fontanella, B. & Sannia, G. ( 2000; ). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66, 920–924.[CrossRef]
    [Google Scholar]
  31. Rodriguez, E., Pickard, M. A. & Vazquez-Duhalt, R. ( 1999; ). Industrial dye decolorization by laccases from ligninolytic fungi. Curr Microbiol 38, 27–32.[CrossRef]
    [Google Scholar]
  32. Smith, M., Shnyreva, A., Wood, D. A. & Thurston, C. F. ( 1998; ). Tandem organization and highly disparate expression of the two laccase genes lcc1 and lcc2 in the cultivated mushroom Agaricus bisporus. Microbiology 144, 1063–1069.[CrossRef]
    [Google Scholar]
  33. Soden, D. M. & Dobson, A. D. W. ( 2001; ). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 147, 1755–1763.
    [Google Scholar]
  34. Thiele, D. J. ( 1992; ). Metal regulated transcription in eukaryotes. Nucleic Acids Res 20, 1183–1191.[CrossRef]
    [Google Scholar]
  35. Thurston, C. F. ( 1994; ). The structure and function of fungal laccases. Microbiology 140, 19–26.[CrossRef]
    [Google Scholar]
  36. Williams, G. T. & Morimoto, R. I. ( 1990; ). Maximal stress-induced transcription from the human HSP70 promoter requires interactions with the basal promoter elements independent of rotational alignment. Mol Cell Biol 10, 3125–3136.
    [Google Scholar]
  37. Yaver, D. S. & Golightly, E. J. ( 1996; ). Cloning and characterization of three laccase genes from the white rot basidiomycete Trametes villosa: genomic organization of the laccase gene family. Gene 181, 95–102.[CrossRef]
    [Google Scholar]
  38. Yaver, D. S., Xu, F., Golightly, E. J. & 7 other authors ( 1996; ). Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62, 834–841.
    [Google Scholar]
  39. Zhou, P. & Thiele, D. J. ( 1991; ). Isolation of a metal-activated transcription factor gene from Candida glabrata by complementation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88, 6112–6116.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26360-0
Loading
/content/journal/micro/10.1099/mic.0.26360-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error