1887

Abstract

The hindguts of wood-feeding termites are the sites of intense, CO-reductive acetogenesis. This activity profoundly influences host nutrition and methane emissions. Homoacetogens previously isolated from diverse termites comprised novel taxa belonging to two distinct bacterial phyla, and . Little else is known about either the diversity or abundance of homoacetogenic species present in any given termite or the genetic details underlying CO-reductive acetogenesis by . A key enzyme of CO-reductive acetogenesis is formyltetrahydrofolate synthetase (FTHFS). A previously designed primer set was used to amplify FTHFS genes from three isolated termite-gut spirochaetes. Sequencing DNA flanking the FTHFS gene of strain ZAS-2 revealed genes encoding two acetogenesis-related enzymes, methenyltetrahydrofolate cyclohydrolase and methylenetetrahydrofolate dehydrogenase. Although termite-gut spirochaetes are only distantly related to clostridia at the ribosomal level, their tetrahydrofolate-dependent enzymes appear to be closely related. In contrast, homologous proteins identified in the non-homoacetogenic oral spirochaete were only distantly related to those from clostridia and the termite-gut treponemes. Having demonstrated their utility with spirochaete pure cultures, the FTHFS primers were used to construct a 91-clone library from the termite-gut community DNA. From this, 19 DNA and eight amino acid FTHFS types were identified. Over 75 % of the retrieved clones formed a novel, coherent cluster with the FTHFS homologues obtained from the termite-gut treponemes. Thus, FTHFS gene diversity in the gut of the termite appears to be dominated by spirochaetes. The homoacetogenic capacity of termite-gut spirochaetes may have been acquired via lateral gene transfer from clostridia.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26351-0
2003-09-01
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492529.html?itemId=/content/journal/micro/10.1099/mic.0.26351-0&mimeType=html&fmt=ahah

References

  1. Bao, Q., Tian, Y., Li, W. & 18 other authors ( 2002; ). A complete sequence of the T. tengcongensis genome. Genome Res 12, 689–700.[CrossRef]
    [Google Scholar]
  2. Boga, H. I., Ludwig, W. & Brune, A. ( 2003; ). Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite. Int J Syst Evol Microbiol 53, 1397–1404.[CrossRef]
    [Google Scholar]
  3. Brauman, A., Kane, M. D., Labat, M. & Breznak, J. A. ( 1992; ). Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257, 1384–1387.[CrossRef]
    [Google Scholar]
  4. Breznak, J. A. ( 1994; ). Acetogenesis from carbon dioxide in termite guts. In Acetogenesis, pp. 303–330. Edited by H. L. Drake. New York: Chapman & Hall.
  5. Breznak, J. A. & Leadbetter, J. R. ( 2002; ). Termite gut spirochetes. In The Prokaryotesan Evolving Electronic Resource for the Microbiological Community. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  6. Breznak, J. A. & Switzer, J. M. ( 1986; ). Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52, 623–630.
    [Google Scholar]
  7. Breznak, J. A., Switzer, J. M. & Seitz, H. J. ( 1988; ). Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150, 282–288.[CrossRef]
    [Google Scholar]
  8. Brune, A. & Friedrich, M. ( 2000; ). Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3, 263–269.[CrossRef]
    [Google Scholar]
  9. Casjens, S., Palmer, N., van Vugt, R. & 12 other authors ( 2000; ). A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35, 490–516.
    [Google Scholar]
  10. Drake, H. L., Daniel, S. L., Küsel, K., Matthies, C., Kuhner, C. & Braus-Stromeyer, S. ( 1997; ). Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? Biofactors 6, 13–24.[CrossRef]
    [Google Scholar]
  11. Eisen, J. A., Nelson, K. E., Paulsen, I. T. & 32 other authors ( 2002; ). The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci U S A 99, 9509–9514.[CrossRef]
    [Google Scholar]
  12. Ferretti, J. J., McShan, W. M., Ajdic, D. & 20 other authors ( 2001; ). Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A 98, 4658–4663.[CrossRef]
    [Google Scholar]
  13. Fraser, C. M., Norris, S. J., Weinstock, G. M. & 30 other authors ( 1998; ). Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375–388.[CrossRef]
    [Google Scholar]
  14. Goldman, N. & Whelan, S. ( 2000; ). Statistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics. Mol Biol Evol 17, 975–978.[CrossRef]
    [Google Scholar]
  15. Goodner, B., Hinkle, G., Gattung, S. & 28 other authors ( 2001; ). Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294, 2323–2328.[CrossRef]
    [Google Scholar]
  16. Kane, M. D. & Breznak, J. A. ( 1991; ). Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch Microbiol 156, 91–98.[CrossRef]
    [Google Scholar]
  17. Kane, M. D., Brauman, A. & Breznak, J. A. ( 1991; ). Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch Microbiol 156, 99–104.[CrossRef]
    [Google Scholar]
  18. Kapatral, V., Anderson, I., Ivanova, N. & 22 other authors ( 2002; ). Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 184, 2005–2018.[CrossRef]
    [Google Scholar]
  19. Kuroda, M., Ohta, T., Uchiyama, I. & 34 other authors ( 2001; ). Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240.[CrossRef]
    [Google Scholar]
  20. Leadbetter, J. R., Schmidt, T. M., Graber, J. R. & Breznak, J. A. ( 1999; ). Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283, 686–689.[CrossRef]
    [Google Scholar]
  21. Leaphart, A. B. & Lovell, C. R. ( 2001; ). Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Appl Environ Microbiol 67, 1392–1395.[CrossRef]
    [Google Scholar]
  22. Leaphart, A. B., Friez, M. J. & Lovell, C. R. ( 2003; ). Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups. Appl Environ Microbiol 69, 693–696.
    [Google Scholar]
  23. Liesack, W., Bak, F., Kreft, J. U. & Stackebrandt, E. ( 1994; ). Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162, 85–90.
    [Google Scholar]
  24. Lilburn, T. G., Schmidt, T. M. & Breznak, J. A. ( 1999; ). Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1, 331–345.[CrossRef]
    [Google Scholar]
  25. Lilburn, T. G., Kim, K. S., Ostrom, N. E., Byzek, K. R., Leadbetter, J. R. & Breznak, J. A. ( 2001; ). Nitrogen fixation by symbiotic and free-living spirochetes. Science 292, 2495–2498.[CrossRef]
    [Google Scholar]
  26. Lovell, C. R., Przybyla, A. & Ljungdahl, L. G. ( 1988; ). Cloning and expression in Escherichia coli of the Clostridium thermoaceticum gene encoding thermostable formyltetrahydrofolate synthetase. Arch Microbiol 149, 280–285.[CrossRef]
    [Google Scholar]
  27. Ng, W.-L., Schummer, M., Cirisano, F. D., Baldwin, R. L., Karlan, B. Y. & Hood, L. ( 1996; ). High-throughput plasmid mini preparations facilitated by micro-mixing. Nucleic Acids Res 24, 5045–5047.[CrossRef]
    [Google Scholar]
  28. Nolling, J., Breton, G., Omelchenko, M. V. & 16 other authors ( 2001; ). Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183, 4823–4838.[CrossRef]
    [Google Scholar]
  29. Odelson, D. A. & Breznak, J. A. ( 1983; ). Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45, 1602–1613.
    [Google Scholar]
  30. Page, R. D. M. ( 1996; ). treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  31. Paster, B. J., Dewhirst, F. E., Cooke, S. M., Fussing, V., Poulsen, L. K. & Breznak, J. A. ( 1996; ). Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 62, 347–352.
    [Google Scholar]
  32. Purdy, K., Embley, T., Takii, S. & Nedwell, D. ( 1996; ). Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-column method. Appl Environ Microbiol 62, 3905–3907.
    [Google Scholar]
  33. Radfar, R., Shin, R., Sheldrick, G. M., Minor, W., Lovell, C. R., Odom, J. D., Dunlap, R. B. & Lebioda, L. ( 2000a; ). The crystal structure of N 10-formyltetrahydrofolate synthetase from Moorella thermoacetica. Biochemistry 39, 3920–3926.[CrossRef]
    [Google Scholar]
  34. Radfar, R., Leaphart, A., Brewer, J. M., Minor, W., Odom, J. D., Dunlap, R. B., Lovell, C. R. & Lebioda, L. ( 2000b; ). Cation binding and thermostability of FTHFS monovalent cation binding sites and thermostability of N 10-formyltetrahydrofolate synthetase from Moorella thermoacetica. Biochemistry 39, 14481–14486.[CrossRef]
    [Google Scholar]
  35. Ragsdale, S. W. ( 1997; ). The eastern and western branches of the Wood/Ljungdahl pathway: how the east and west were won. Biofactors 6, 3–11.[CrossRef]
    [Google Scholar]
  36. Raponi, M., Dawes, I. W. & Arndt, G. M. ( 2000; ). Characterization of flanking sequences using long inverse PCR. Biotechniques 28, 838–844.
    [Google Scholar]
  37. Ruepp, A., Graml, W., Santos-Martinez, M. L. & 7 other authors ( 2000; ). The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407, 508–513.[CrossRef]
    [Google Scholar]
  38. Schink, B., Thiemann, V., Laue, H. & Friedrich, M. W. ( 2002; ). Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate. Arch Microbiol 177, 381–391.[CrossRef]
    [Google Scholar]
  39. Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. ( 2002; ). tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504.[CrossRef]
    [Google Scholar]
  40. Schöniger, M. & von Haeseler, A. ( 1999; ). Toward assigning helical regions in alignments of ribosomal RNA and testing the appropriateness of evolutionary models. J Mol Evol 49, 691–698.[CrossRef]
    [Google Scholar]
  41. Shimizu, T., Ohtani, K., Hirakawa, H. & 7 other authors ( 2002; ). Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A 99, 996–1001.[CrossRef]
    [Google Scholar]
  42. Tholen, A. & Brune, A. ( 2000; ). Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2, 436–449.[CrossRef]
    [Google Scholar]
  43. White, O., Eisen, J. A., Heidelberg, J. F. & 29 other authors ( 1999; ). Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1577.[CrossRef]
    [Google Scholar]
  44. Wood, H. G. ( 1991; ). Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J 5, 156–163.
    [Google Scholar]
  45. Wood, D. W., Setubal, J. C., Kaul, R. & 48 other authors ( 2001; ). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294, 2317–2323.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26351-0
Loading
/content/journal/micro/10.1099/mic.0.26351-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error