1887

Abstract

Saxitoxin (STX) is the most potent representative among the paralytic shellfish poisoning (PSP) toxins, which are highly selective Na channel-blocking alkaloids. This study investigated, in cultures of the cyanobacterium T3, the effects of pH, salt, amiloride and lidocaine hydrochloride on total cellular levels of Na and K ions and STX accumulation. Both Na levels and intracellular STX concentrations increased exponentially in response to rising alkalinity. NaCl inhibited cyanobacterial growth at a concentration of 10 mM. In comparison with osmotically stressed controls, however, NaCl promoted STX accumulation in a dose-dependent manner. A correlation was seen in the time-course of both total cellular Na levels and intracellular STX for NaCl, amiloride and lidocaine exposure. The increase in cellular Na induced by NaCl at 10 mM was coupled with a proportional accumulation of STX. The two Na channel-blocking agents amiloride and lidocaine had opposing effects on both cellular Na levels and STX accumulation. Amiloride at 1 mM reduced ion and toxin concentrations, while lidocaine at 1 μM increased the total cellular Na and STX levels. The effects of the channel-blockers were antagonistic and dependent on an alkaline pH. The results presented suggest that, in T3, STX is responsive to cellular Na levels. This may indicate that either STX metabolism or the toxin itself could be linked to the maintenance of cyanobacterial homeostasis. The results also enhance the understanding of STX production and the ecology of PSP toxin-producing cyanobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26350-0
2004-02-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500455.html?itemId=/content/journal/micro/10.1099/mic.0.26350-0&mimeType=html&fmt=ahah

References

  1. Alam, M., Ikawa, M., Sasner, J. J., Jr & Sawyer, P. J. ( 1973; ). Purification of Aphanizomenon flos-aquae toxin and its chemical and physiological properties. Toxicon 11, 65–72.[CrossRef]
    [Google Scholar]
  2. Ali, R. M. ( 2000; ). Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Science 152, 173–179.[CrossRef]
    [Google Scholar]
  3. Apte, S. K. & Thomas, J. ( 1986; ). Membrane electrogenesis and sodium transport in filamentous nitrogen-fixing cyanobacteria. Eur J Biochem 154, 395–401.[CrossRef]
    [Google Scholar]
  4. Bidani, A. & Heming, T. A. ( 1997; ). Effects of lidocaine on cytosolic pH regulation and stimulus-induced effector functions in alveolar macrophages. Lung 175, 349–361.[CrossRef]
    [Google Scholar]
  5. Bowling, L. C. & Baker, P. D. ( 1996; ). Major cyanobacterial bloom in the Barwon-Darling River, Australia, in 1991, and underlying limnological conditions. Mar Freshw Res 47, 643–657.[CrossRef]
    [Google Scholar]
  6. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  7. Carmichael, W. W., Evans, W. R., Yin, Q. Q., Bell, P. & Moczydlowsky, E. ( 1997; ). Evidence of paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl Environ Microbiol 63, 3104–3110.
    [Google Scholar]
  8. Catteral, W. A., Morrow, G. S. & Hartsharne, R. P. ( 1979; ). Neurotoxin binding to receptor sites associated with the voltage sensitive sodium channels in intact, lysed, and detergent solubilized brain membranes. J Biol Chem 254, 11379–11387.
    [Google Scholar]
  9. Catterall, W. A. ( 1980; ). Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20, 15–43.[CrossRef]
    [Google Scholar]
  10. Cestèle, S. & Catterall, W. A. ( 2000; ). Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82, 883–892.[CrossRef]
    [Google Scholar]
  11. Gallacher, S. & Smith, E. A. ( 1999; ). Bacteria and paralytic shellfish toxins. Protist 150, 245–255.[CrossRef]
    [Google Scholar]
  12. Gorham, P. R., McLachlan, J., Hammer, U. T. & Kim, W. K. ( 1964; ). Isolation and culture of toxic strains of Anabaena flos-aquae (Lyngb.) de Bréb. Verh Int Verein Theor Angew Limnol 15, 796–804.
    [Google Scholar]
  13. Harada, T., Oshima, Y. & Yasumoto, T. ( 1982; ). Structure of two paralytic shellfish toxins, gonyautoxins V and VI, isolated from a tropical dinoflagellate, Pyrodinium bahamense var. compressa. Agric Biol Chem 46, 1861–1864.[CrossRef]
    [Google Scholar]
  14. Hille, B. ( 1997; ). Ionic Channels of Excitable Membranes, 2nd edn. Sunderland, MA: Sinauer Associates.
  15. Horikoshi, K. ( 1991; ). Microorganisms in Alkaline Environments. New York: VCH.
  16. Humpage, A. R., Rositano, J., Bretag, A., Brown, R., Baker, P., Nicholson, B. C. & Steffensen, D. A. ( 1994; ). Paralytic shellfish poisons from Australian cyanobacterial blooms. Aust J Mar Freshw Res 45, 761–771.[CrossRef]
    [Google Scholar]
  17. Hwang, D. F. & Lu, Y. H. ( 2000; ). Influence of environmental and nutritional factors on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum. Toxicon 38, 1491–1503.[CrossRef]
    [Google Scholar]
  18. Kaas, H. & Henriksen, P. ( 2000; ). Saxitoxins (PSP toxins) in Danish lakes. Water Res 34, 2089–2097.[CrossRef]
    [Google Scholar]
  19. Kim, D. & Smith, T. W. ( 1986; ). Effects of amiloride and ouabain on contractile state, Ca and Na fluxes, and Na content in cultured chick heart cells. Mol Pharmacol 29, 363–371.
    [Google Scholar]
  20. Krulwich, T. A., Ito, M. & Guffanti, A. A. ( 2001; ). The Na+-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1505, 158–168.[CrossRef]
    [Google Scholar]
  21. Lagos, N., Onodera, H., Zagatto, P. A., Andrinolo, D., Azevedo, S. M. F. Q. & Oshima, Y. ( 1999; ). The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 37, 1359–1373.[CrossRef]
    [Google Scholar]
  22. Lawrence, J. F., Wong, B. & Ménard, C. ( 1996; ). Determination of decarbamoyl saxitoxin and its analogues in shellfish by prechromatographic oxidation and liquid chromatography with fluorescence detection. J AOAC Int 79, 1111–1116.
    [Google Scholar]
  23. Lengeler, J. W., Drews, G. & Schlegel, H. G. (editors) ( 1999; ). Biology of the Prokaryotes. Oxford: Blackwell Science.
  24. Maestri, O. & Joset, F. ( 2000; ). Regulation by external pH and stationary growth phase of the acetolactate synthase from Synechocystis PCC6803. Mol Microbiol 37, 828–838.[CrossRef]
    [Google Scholar]
  25. Miller, A. G., Turpin, D. H. & Canvin, D. T. ( 1984; ). Na+ requirement for growth, photosynthesis, and pH regulation in the alkalotolerant cyanobacterium Synechococcus leopoliensis. J Bacteriol 159, 100–106.
    [Google Scholar]
  26. Negri, A. P., Jones, G. J., Blackburn, S., Oshima, Y. & Onodera, H. ( 1997; ). Effect of culture and bloom development, and of sample storage on paralytic shellfish poisons in the cyanobacterium Anabaena circinalis. J Phycol 33, 85–98.
    [Google Scholar]
  27. Nosaka, S., Ohkawa, T. A., Okihara, K. & Yoshikawa, K. ( 1992; ). Effects of local anesthetics on the Chara plasmalemma. Biochim Biophys Acta 1106, 325–334.[CrossRef]
    [Google Scholar]
  28. Ogata, T., Kodama, M. & Ishimara, T. ( 1987; ). Toxin production in the dinoflagellate Protogonyaulax tamarensis. Toxicon 25, 923–928.[CrossRef]
    [Google Scholar]
  29. Pereira, P., Onodera, H., Andrinolo, D., Franca, S., Araujo, F., Lagos, N. & Oshima, Y. ( 2000; ). Paralytic shellfish toxins in the freshwater cyanobacterium Aphanizomenon flos-aquae, isolated from Montargil reservoir, Portugal. Toxicon 38, 1689–1702.[CrossRef]
    [Google Scholar]
  30. Pomati, F., Sacchi, S., Rossetti, C., Giovannardi, S., Onodera, H., Oshima, Y. & Neilan, B. A. ( 2000; ). The freshwater cyanobacterium Planktothrix sp. FP1: molecular identification and detection of paralytic shellfish poisoning toxins. J Phycol 36, 553–562.[CrossRef]
    [Google Scholar]
  31. Pomati, F., Neilan, B. A., Manarolla, G., Suzuki, T. & Rossetti, C. ( 2003a; ). Enhancement of intracellular saxitoxin accumulation by lidocaine hydrochloride in the cyanobacterium Cylindrospermopsis raciborskii T3 (Nostocales). J Phycol 39, 535–542.[CrossRef]
    [Google Scholar]
  32. Pomati, F., Rossetti, C., Calamari, D. & Neilan, B. A. ( 2003b; ). Effects of saxitoxin (STX) and veratridine on bacterial Na+/K+ fluxes: a prokaryote-based STX bioassay. Appl Environ Microbiol 69, 7371–7376.[CrossRef]
    [Google Scholar]
  33. Quintero, M. J., Muro-Pastor, A. M., Herrero, A. & Flores, E. ( 2000; ). Arginine catabolism in the cyanobacterium Synechocystis sp. strain PCC6803 involves the urea cycle and arginase pathway. J Bacteriol 182, 1008–1015.[CrossRef]
    [Google Scholar]
  34. Rowbury, R. J., Goodson, M. & Humphrey, T. J. ( 1994; ). Sodium chloride induces an NhaA/NhaR-independent acid sensitivity at neutral external pH in Escherichia coli. Appl Environ Microbiol 60, 1630–1634.
    [Google Scholar]
  35. Schaefer, L., Sakai, H., Mattei, M. G., Lazdunski, M. & Lingueglia, E. ( 2001; ). Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na+ channel from human small intestine. FEBS Lett 471, 205–210.
    [Google Scholar]
  36. Shibamoto, S., Hori, T., Hayakawa, M., Nango, M., Cragoe, E. J., Jr, Oku, N. & Ito, F. ( 1990; ). Inhibitory effect of local anesthetics on Na+/H+ antiporter in brush border membrane-reconstituted vesicles. Life Sci 47, 1129–1133.[CrossRef]
    [Google Scholar]
  37. Shimizu, Y. ( 1977; ). Chemistry and distribution of deleterious dinoflagellate toxins. In Marine Natural Products Chemistry, pp. 261–269. Edited by D. J. Faulkner & W. H. Fenical. New York: Plenum.
  38. Shimizu, Y. ( 1996; ). Microalgal metabolites – a new perspective. Annu Rev Microbiol 50, 431–465.[CrossRef]
    [Google Scholar]
  39. Sivonen, K. & Jones, G. ( 1999; ). Cyanobacterial toxins. In: Toxic Cyanobacteria in Water, pp. 41–111. Edited by I. Chorus & J. Bartram. London: E. & F. N. Spon.
  40. Sonoda, M., Katoh, H., Vermaas, W., Schmetterer, G. & Ogawa, T. ( 1998; ). Photosynthetic electron transport involved in PxcA-dependent proton extrusion in Synechocystis sp. strain PCC6803: effect of pxcA inactivation on CO2, HCO 3, and NO 3 uptake. J Bacteriol 180, 3799–3803.
    [Google Scholar]
  41. Strichartz, G. ( 1981; ). Relative potencies of several derivates of saxitoxin: electrophysiological and toxin binding studies. Biophys J 33, 209–216.
    [Google Scholar]
  42. Suzuki, T., Ezure, T., Yamaguchi, T., Domen, H., Ishida, M. & Schmidt, W. ( 2000; ). Stimulatory effect of procaine on the growth of several microalgae and cyanobacteria. J Pharm Pharmacol 52, 243–251.[CrossRef]
    [Google Scholar]
  43. Waditee, R., Hibino, T., Tanaka, Y., Nakamura, T., Incharoensakdi, A. & Takabe, T. ( 2001; ). Halotolerant cyanobacterium Aphanothece halophytica contains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J Biol Chem 276, 36931–36938.[CrossRef]
    [Google Scholar]
  44. Zingone, A. & Enevoldsen, H. O. ( 2000; ). The diversity of harmful algal blooms: a challenge for science and management. Ocean Coastal Manag 43, 725–748.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26350-0
Loading
/content/journal/micro/10.1099/mic.0.26350-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error