1887

Abstract

CgtA is a member of the Obg/Gtp1 subfamily of small GTP-binding proteins. CgtA homologues have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Nevertheless, despite the fact that is an essential gene in most bacterial species, its function in the regulation of cellular processes is largely unknown. Here it has been demonstrated that in two bacterial species, and , the gene product enhances survival of cells after UV irradiation. Expression of the gene was found to be enhanced after UV irradiation of both and . Moderate overexpression of resulted in higher UV resistance of wild-type and strains, but not in , , and mutant hosts. Overexpression of the gene in the mutant, which is very sensitive to UV light, restored the level of survival of UV-irradiated cells to the levels observed for wild-type bacteria. Moreover, the basal level of the RecA protein was lower in a temperature-sensitive mutant of than in the strain, and contrary to wild-type bacteria, no significant increase in gene expression was observed after UV irradiation of this mutant. Finally, stimulation of gene transcription under these conditions was impaired in the mutant. All these results strongly suggest that the gene product is involved in DNA repair processes, most probably by stimulation of gene expression and resultant activation of RecA-dependent DNA repair pathways.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26292-0
2003-07-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491763.html?itemId=/content/journal/micro/10.1099/mic.0.26292-0&mimeType=html&fmt=ahah

References

  1. Arigoni, F., Talabot, F., Peitsch, M., Edgerton, M. D., Meldrum, E., Allet, E., Fish, R., Jamotte, T., Curchod, M.-L. & Loferer, H. ( 1998; ). A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 16, 851–856.[CrossRef]
    [Google Scholar]
  2. Belas, R., Mileham, A., Cohn, D., Hilmen, M., Simon, M. & Silverman, M. ( 1982; ). Bacterial luminescence: isolation and expression of the luciferase genes from Vibrio harveyi. Science 218, 791–793.[CrossRef]
    [Google Scholar]
  3. Buglino, J., Shen, V., Hakimian, P. & Lima, C. D. ( 2002; ). Structural and biochemical analysis of the Obg GTP binding protein. Structure 10, 1581–1592.[CrossRef]
    [Google Scholar]
  4. Chang, A. C. Y. & Cohen, S. N. ( 1978; ). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134, 1141–1156.
    [Google Scholar]
  5. Courcelle, J., Khodursky, A., Peter, B., Brown, P. O. & Hanawalt, P. C. ( 2001; ). Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41–64.
    [Google Scholar]
  6. Czyż, A., Wróbel, B. & Wȩgrzyn, G. ( 2000a; ). Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair. Microbiology 146, 283–288.
    [Google Scholar]
  7. Czyż, A., Jasiecki, J., Bogdan, A., Szpilewska, H. & Wȩgrzyn, G. ( 2000b; ). Genetically modified Vibrio harveyi strains as potential bioindicators of mutagenic pollution of marine environments. Appl Environ Microbiol 66, 599–605.[CrossRef]
    [Google Scholar]
  8. Czyż, A., Zielke, R., Konopa, G. & Wȩgrzyn, G. ( 2001; ). A Vibrio harveyi insertional mutant in the cgtA (obg, yhbZ) gene, whose homologues are present in diverse organisms ranging from bacteria to humans and are essential genes in many bacterial species. Microbiology 147, 183–191.
    [Google Scholar]
  9. Czyż, A., Szpilewska, H., Dutkiewicz, R., Kowalska, W., Biniewska-Godlewska, A. & Wȩgrzyn, G. ( 2002; ). Comparison of the Ames test and a newly developed assay for detection of mutagenic pollution of marine environments. Mutat Res 519, 67–74.[CrossRef]
    [Google Scholar]
  10. Durland, R. H., Toukdarian, A., Fang, F. & Helinski, D. R. ( 1990; ). Mutations in the trfA replication gene of the broad-host range plasmid RK2 results in elevated plasmid copy number. J Bacteriol 172, 3859–3867.
    [Google Scholar]
  11. Dutkiewicz, R., Słomińska, M., Wȩgrzyn, G. & Czyż, A. ( 2002; ). Overexpression of the cgtA (yhbZ, obgE) gene, coding for an essential GTP-binding protein, impairs the regulation of chromosomal functions in Escherichia coli. Curr Microbiol 45, 440–445.[CrossRef]
    [Google Scholar]
  12. Jensen, K. F. ( 1993; ). The Escherichia coli ‘wild types' W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175, 3401–3407.
    [Google Scholar]
  13. Klein, G., Z˙mijewski, M., Krzewska, J., Czeczatka, M. & Lipińska, B. ( 1998; ). Cloning and characterization of the dnaK heat shock operon of the marine bacterium Vibrio harveyi. Mol Gen Genet 259, 179–189.[CrossRef]
    [Google Scholar]
  14. Kobayashi, G., Moriya, S. & Wada, C. ( 2001; ). Deficiency of essential GTP-binding protein ObgE in Escherichia coli inhibits chromosome partition. Mol Microbiol 41, 1037–1051.
    [Google Scholar]
  15. Kok, J., Trach, K. A. & Hoch, J. A. ( 1994; ). Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. J Bacteriol 176, 7155–7160.
    [Google Scholar]
  16. Lin, B. & Maddock, J. R. ( 2001; ). The N-terminal domain of the Caulobacter crescentus CgtA protein does not function as a guanine nucleotide exchange factor. FEBS Lett 489, 108–111.[CrossRef]
    [Google Scholar]
  17. Lin, B., Covalle, K. L. & Maddock, J. R. ( 1999; ). The Caulobacter crescentus CgtA protein displays unusual guanine nucleotide binding and exchange properties. J Bacteriol 181, 5825–5832.
    [Google Scholar]
  18. Lin, B., Skidmore, J. M., Bhatt, A., Pfeffer, S. M., Pawloski, L. & Maddock, J. R. ( 2001; ). Alanine scan mutagenesis of the switch I domain the Caulobacter crescentus CgtA protein reveals critical amino acids required for in vivo function. Mol Microbiol 39, 924–934.[CrossRef]
    [Google Scholar]
  19. Linn, S. ( 1996; ). The DNases, topoisomerases and helicases of Escherichia coli. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 764–772. Edited by F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter & H. E. Umbarger. Washington, DC: American Society for Microbiology.
  20. MacKenzie, C., Chidambaram, M., Sodergren, E. J., Kaplan, S. & Weinstock, G. M. ( 1995; ). DNA repair mutants of Rhodobacter sphaeroides. J Bacteriol 177, 3027–3035.
    [Google Scholar]
  21. Maddock, J., Bhatt, A., Koch, M. & Skidmore, J. ( 1997; ). Identification of an essential Caulobacter crescentus gene encoding a member of the Obg family of GTP-binding proteins. J Bacteriol 179, 6426–6431.
    [Google Scholar]
  22. Miyamoto, C. M., Lin, Y. H. & Meighen, E. A. ( 2000; ). Control of bioluminescence in Vibrio fischeri by the LuxO signal response regulator. Mol Microbiol 36, 594–607.
    [Google Scholar]
  23. Rupp, W. D. ( 1996; ). DNA repair mechanisms. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 2277–2294. Edited by F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter & H. E. Umbarger. Washington, DC: American Society for Microbiology.
  24. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  25. Scott, J. M. & Haldenwang, W. G. ( 1999; ). Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor σ B. J Bacteriol 181, 4653–4660.
    [Google Scholar]
  26. Scott, J. M., Ju, J., Mitchell, T. & Haldenwang, W. G. ( 2000; ). The Bacillus subtilis GTP-binding protein Obg and regulators of the σ B stress response transcription factor cofractionate with ribosomes. J Bacteriol 182, 2771–2777.[CrossRef]
    [Google Scholar]
  27. Sikora-Borgula, A., Słomińska, M., Trzonkowski, P., Zielke, R., Myśliwski, A., Wȩgrzyn, G. & Czyż, A. ( 2002; ). A role for the common GTP-binding protein in coupling of chromosome replication to cell growth and cell division. Biochem Biophys Res Commun 292, 333–338.[CrossRef]
    [Google Scholar]
  28. Singer, M., Baker, T. A., Schnitzler, G. & 7 other authors ( 1989; ). A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev 53, 1–24.
    [Google Scholar]
  29. Słomińska, M., Konopa, G., Wȩgrzyn, G. & Czyż, A. ( 2002; ). Impaired chromosome partitioning and synchronization of DNA replication initiation in a Vibrio harveyi insertional mutant in the cgtA gene coding for a common GTP-binding protein. Biochem J 362, 579–584.[CrossRef]
    [Google Scholar]
  30. Taft-Benz, S. A. & Schaaper, R. M. ( 1999; ). The C-terminal domain of DnaQ contains the polymerase binding site. J Bacteriol 181, 2963–2965.
    [Google Scholar]
  31. Tan, J., Jakob, U. & Bardwell, J. C. ( 2002; ). Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J Bacteriol 184, 2692–2698.[CrossRef]
    [Google Scholar]
  32. Vidwans, S. J., Ireton, K. & Grossman, A. D. ( 1995; ). Possible role for the essential GTP-binding protein Obg in regulating the initiation of sporulation in Bacillus subtilis. J Bacteriol 177, 3308–3311.
    [Google Scholar]
  33. Vieira, J. & Messing, J. ( 1982; ). The pUC plasmids, an M13mp7-derived system for insertional mutagenesis and sequencing with synthetic universal primers. Gene 19, 259–268.[CrossRef]
    [Google Scholar]
  34. Walker, G. C. ( 1996; ). The SOS response of Escherichia coli. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1400–1416. Edited by F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter & H. E. Umbarger. Washington, DC: American Society for Microbiology.
  35. Wȩgrzyn, G. & Taylor, K. ( 1992; ). Inheritance of the replication complex by one of two daughter copies during λ plasmid replication in Escherichia coli. J Mol Biol 226, 681–688.[CrossRef]
    [Google Scholar]
  36. Wȩgrzyn, A., Wȩgrzyn, G. & Taylor, K. ( 1995a; ). Protection of coliphage λO initiator protein from proteolysis in the assembly of the replication complex in vivo. Virology 207, 179–184.[CrossRef]
    [Google Scholar]
  37. Wȩgrzyn, G., Wȩgrzyn, A., Konieczny, I., Bielawski, K., Konopa, G., Obuchowski, M., Helinski, D. R. & Taylor, K. ( 1995b; ). Involvement of the host initiator function dnaA in the replication of coliphage λ. Genetics 139, 1469–1481.
    [Google Scholar]
  38. Wittinghofer, A. ( 2002; ). Obg, a G domain with a beautiful extension. Structure 10, 1471–1472.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26292-0
Loading
/content/journal/micro/10.1099/mic.0.26292-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error