1887

Abstract

The cell envelope of pathogenic mycobacteria is highly distinctive in that it contains a large number of structurally related very long multiple methyl-branched fatty acids. These complex molecules are thought to play important roles in cell envelope organization and virulence. The genetic and enzymic characterization of the polyketide synthase Mas, which is responsible for the synthesis of one such family of fatty acids (the mycocerosic acids), paved the way towards the identification of other enzymes involved in the synthesis of methyl-branched fatty acids in . In an effort to elucidate the origin of these complex fatty acids and their possible involvement in pathogenesis, the two -like polyketide genes and were disrupted in and the effects of their inactivation on fatty acid composition and virulence were analysed. While the disruption of resulted in a mutant deficient in the production of phthiocerol dimycocerosates, the cell envelope composition of the mutant was found to be identical to that of the wild-type parental strain H37Rv. Interestingly, both the and mutants displayed severe growth defects in mice.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26278-0
2003-07-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491837.html?itemId=/content/journal/micro/10.1099/mic.0.26278-0&mimeType=html&fmt=ahah

References

  1. Azad, A. K., Sirakova, T. D., Fernandes, N. D. & Kolattukudy, P. E. ( 1997; ). Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J Biol Chem 272, 16741–16745.[CrossRef]
    [Google Scholar]
  2. Bardarov, S., Kriakov, J., Carriere, C., Yu, S., Vaamonde, C., Adam, R. A. M., Bloom, B. R., Hatfull, G. F. & Jacobs, W. R., Jr ( 1997; ). Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 94, 10961–10966.[CrossRef]
    [Google Scholar]
  3. Besra, G. S., Bolton, R., McNeil, M. R., Ridell, M., Simpson, K. E., Glushka, J., van Halbeek, H., Brennan, P. J. & Minnikin, D. E. ( 1992; ). Structure elucidation and antigenicity of a novel family of glycolipid antigens from Mycobacterium tuberculosis H37Rv. Biochemistry 31, 9832–9837.[CrossRef]
    [Google Scholar]
  4. Camacho, L. R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. ( 1999; ). Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34, 257–267.[CrossRef]
    [Google Scholar]
  5. Camacho, L. R., Constant, P., Raynaud, C., Lanéelle, M.-A., Triccas, J. A., Gicquel, B., Daffé, M. & Guilhot, C. ( 2001; ). Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276, 19845–19854.[CrossRef]
    [Google Scholar]
  6. Chopra, I. & Brennan, P. J. ( 1998; ). Molecular action of anti-mycobacterial agents. Tubercle Lung Dis 78, 89–98.[CrossRef]
    [Google Scholar]
  7. Constant, P., Perez, E., Malaga, W., Lanéelle, M.-A., Saurel, O., Daffé, M. & Guilhot, C. ( 2002; ). Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. J Biol Chem 277, 38148–38158.[CrossRef]
    [Google Scholar]
  8. Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R., Jr ( 1999; ). Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83.[CrossRef]
    [Google Scholar]
  9. Daffé, M. & Draper, P. ( 1998; ). The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39, 131–203.
    [Google Scholar]
  10. Daffé, M. & Lanéelle, M.-A. ( 1988; ). Distribution of phthiocerol diester, phenolic mycosides and related compounds in mycobacteria. J Gen Microbiol 134, 2049–2055.
    [Google Scholar]
  11. Daffé, M., Lacave, C., Lanéelle, M.-A., Gillois, M. & Lanéelle, G. ( 1988; ). Polyphthienoyl trehalose, glycolipids specific for virulent strains of the tubercle bacillus. Eur J Biochem 172, 579–584.[CrossRef]
    [Google Scholar]
  12. Dubey, V. S., Sirakova, T. D. & Kolattukudy, P. E. ( 2002; ). Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol Microbiol 45, 1451–1459.[CrossRef]
    [Google Scholar]
  13. Fitzmaurice, A. M. & Kolattukudy, P. E. ( 1998; ). An acyl-CoA synthase (acoas) gene adjacent to the mycocerosic acid synthase (mas) locus is necessary for mycocerosyl lipid synthesis in Mycobacterium tuberculosis var. bovis BCG. J Biol Chem 273, 8033–8039.[CrossRef]
    [Google Scholar]
  14. Goren, M. B. & Brennan, P. J. ( 1979; ). Mycobacterial lipids: chemistry and biologic activities. In Tuberculosis, pp. 63–193. Edited by G. P. Youmans. Philadelphia, London & Toronto: W. B. Saunders.
  15. Jackson, M., Raynaud, C., Lanéelle, M.-A., Guilhot, C., Laurent-Winter, C., Ensergueix, D., Gicquel, B., Daffé. &, M. ( 1999; ). Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31, 1573–1587.[CrossRef]
    [Google Scholar]
  16. Jarlier, V. & Nikaido, H. ( 1994; ). Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123, 11–18.[CrossRef]
    [Google Scholar]
  17. Kolattukudy, P. E., Fernandes, N. D., Azad, A. K., Fitzmaurice, A.-M. & Sirakova, T. D. ( 1997; ). Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol 24, 263–270.[CrossRef]
    [Google Scholar]
  18. Kremer, L., Dover, L. G., Carrere, S. & 7 other authors ( 2002; ). Mycolic acid biosynthesis and enzymatic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Biochem J 364, 423–430.[CrossRef]
    [Google Scholar]
  19. Lemassu, A., Lanéelle, M.-A., Daffé. &, M. ( 1991; ). Revised structure of a trehalose-containing immunoreactive glycolipid of Mycobacterium tuberculosis. FEMS Microbiol Lett 78, 171–176.[CrossRef]
    [Google Scholar]
  20. Manganelli, R., Dubnau, E., Tyagi, S., Kramer, F. R. & Smith, I. ( 1999; ). Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol 31, 715–724.[CrossRef]
    [Google Scholar]
  21. Manganelli, R., Voskuil, M. I., Schoolnik, G. K. & Smith, I. ( 2001; ). The Mycobacterium tuberculosis ECF sigma factor σ E: role in global gene expression and survival in macrophages. Mol Microbiol 41, 423–437.[CrossRef]
    [Google Scholar]
  22. Minnikin, D. E., Dobson, G., Sesardic, D. & Ridell, M. ( 1985; ). Mycolipenates and mycolipanolates of trehalose from Mycobacterium tuberculosis. J Gen Microbiol 131, 1369–1374.
    [Google Scholar]
  23. Minnikin, D. E., Kremer, L., Dover, L. G. & Besra, G. S. ( 2002; ). The methyl-branched fortifications of Mycobacterium tuberculosis. Chem Biol 9, 545–553.[CrossRef]
    [Google Scholar]
  24. Muñoz, M., Lanéelle, M.-A., Luquin, M., Torrelles, J., Julian, E., Ausina, V., & Daffe, M. ( 1997; ). Occurrence of an antigenic triacyl trehalose in clinical isolates and reference strains of Mycobacterium tuberculosis. FEMS Microbiol Lett 157, 251–259.[CrossRef]
    [Google Scholar]
  25. Pelicic, V., Jackson, M., Reyrat, J. M., Jacobs, W. R., Jr, Gicquel, B. & Guilhot, C. ( 1997; ). Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 94, 10955–10960.[CrossRef]
    [Google Scholar]
  26. Rousseau, C., Neyrolles, O., Bordat, Y., Giroux, S., Sirakova, T. D., Prevost, M.-C., Kolattukudy, P. E., Gicquel, B. & Jackson, M. ( 2003; ). Deficiency in mycolipenate- and mycosanoate-derived acyltrehaloses enhances early interactions of Mycobacterium tuberculosis with host cells. Cell Microbiol 5, (in press).
    [Google Scholar]
  27. Sirakova, T. D., Thirumala, A. K., Dubey, V. S., Sprecher, H. & Kolattukudy, P. E. ( 2001; ). The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl branched fatty acids required for sulfolipid synthesis. J Biol Chem 276, 16833–16839.[CrossRef]
    [Google Scholar]
  28. Sirakova, T. D., Dubey, V. S., Cynamon, M. H. & Kolattukudy, P. E. ( 2003; ). Attenuation of Mycobacterium tuberculosis by disruption of a mas-like gene or a chalcone synthase-like gene that causes deficiency in dimycocerosyl phthiocerol synthesis. J Bacteriol 185, 2999–3008.[CrossRef]
    [Google Scholar]
  29. World Health Organization ( 2002; ). Tuberculosis fact sheet no. 104. http://www.who.int/mediacentre/factsheets/who104/en/index.html.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26278-0
Loading
/content/journal/micro/10.1099/mic.0.26278-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error