1887

Abstract

The biochemical response to oxygen of the strictly anaerobic sulfate-reducing bacterium was studied with the goal of elucidating survival strategies in oxic environments. Cultures of on medium containing lactate and sulfate were exposed to oxygen (concentration 5–120 μM). Growth was fully inhibited by oxygen, but the cultures resumed growth as soon as they were shifted back to anoxic conditions. Following 24 h exposure to oxygen the growth rate was as high as 70 % of the growth rates observed before oxygenation. Catalase levels and activity were enhanced by exposure to oxygen whereas superoxide-scavenging and glutathione reductase activities were not affected. The general pattern of cellular proteins as analysed by two-dimensional electrophoresis was altered in the presence of oxygen, the levels of approximately 12 % of the detected proteins being markedly increased. Among the induced proteins, a homologue of a 60 kDa eukaryotic heat-shock protein (Hsp60) was identified by immunoassay analysis. In the absence of external substrates, the steady-state levels of nucleoside triphosphates detected by P-NMR under saturating concentrations of oxygen were 20 % higher than under anoxic conditions. The higher energy levels developed under oxygen correlated with a lower rate of substrate (glycogen) mobilization, but no experimental evidence for a contribution from oxidative phosphorylation was found. The hypothesis that oxygen interferes with ATP dissipation processes is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26155-0
2003-06-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/6/mic1491513.html?itemId=/content/journal/micro/10.1099/mic.0.26155-0&mimeType=html&fmt=ahah

References

  1. Abreu, I. A., Xavier, A. V., LeGall, J., Cabelli, D. E. & Teixeira, M. ( 2002; ). Superoxide scavenging by neelaredoxin: dismutation and reduction activities in anaerobes. J Biol Inorg Chem 7, 668–674.[CrossRef]
    [Google Scholar]
  2. Adams, M. W. W., Jenney, F. E. Jr, Clay M. D. & Johnson, M. K. ( 2002; ). Superoxide reductase: fact or fiction? J Biol Inorg Chem 7, 647–652.[CrossRef]
    [Google Scholar]
  3. Battersby, N. S., Malcom, S. J., Brown, C. M. & Stanley, S. O. ( 1985; ). Sulphate reduction in oxic and sub-oxic North-East Atlantic sediments. FEMS Microbiol Ecol 31, 225–228.[CrossRef]
    [Google Scholar]
  4. Beers, R. F. Jr & Sizer, I. W. ( 1952; ). Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195, 133–140.
    [Google Scholar]
  5. Bossier, P., Fernandes, L., Rocha, D. & Rodrigues-Pousada, C. ( 1993; ). Overexpression of YAP2, coding for a new yAP protein, and YAP1 in Saccharomyces cerevisiae alleviates growth inhibition caused by 1,10-phenanthroline. J Biol Chem 31, 23640–23645.
    [Google Scholar]
  6. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  7. Chen, M., Liu, M.-Y., LeGall, J., Fareleira, P., Santos, H. & Xavier, A. V. ( 1993a; ). Purification and characterization of an NADH-rubredoxin oxidoreductase involved in the utilization of oxygen by Desulfovibrio gigas. Eur J Biochem 216, 443–448.[CrossRef]
    [Google Scholar]
  8. Chen, M., Liu, M.-Y., LeGall, J., Fareleira, P., Santos, H. & Xavier, A. V. ( 1993b; ). Rubredoxin oxidase, a new flavo-hemo protein, is the site of oxygen reduction to water by the “strict anaerobe” Desulfovibrio gigas. Biochem Biophys Res Commun 193, 100–105.[CrossRef]
    [Google Scholar]
  9. Chen, L., Sharma, P., LeGall, J., Mariano, A. M., Teixeira, M. & Xavier, A. V. ( 1994; ). A blue non-heme iron protein from Desulfovibrio gigas. Eur J Biochem 226, 613–618.[CrossRef]
    [Google Scholar]
  10. Cypionka, H. ( 2000; ). Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54, 827–848.[CrossRef]
    [Google Scholar]
  11. Dannenberg, S., Kroder, M., Dilling, W. & Cypionka, H. ( 1992; ). Oxidation of H2, organic compounds and inorganic sulphur compounds coupled to reduction of O2 or nitrate by sulphate-reducing bacteria. Arch Microbiol 158, 93–99.[CrossRef]
    [Google Scholar]
  12. Dilling, W. & Cypionka, H. ( 1990; ). Aerobic respiration in sulphate-reducing bacteria. FEMS Microbiol Lett 71, 123–128.
    [Google Scholar]
  13. Dos Santos, W. G., Pacheco, I., Liu, M.-Y., Teixeira, M., Xavier, A. V. & LeGall, J. ( 2000; ). Purification and characterization of an iron superoxide dismutase and a catalase from the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 182, 769–804.
    [Google Scholar]
  14. Fareleira, P., LeGall, J., Xavier, A. V. & Santos, H. ( 1997; ). Pathways for utilization of carbon reserves in Desulfovibrio gigas under fermentative and respiratory conditions. J Bacteriol 179, 3972–3980.
    [Google Scholar]
  15. Farr, S. B. & Kogoma, T. ( 1991; ). Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55, 561–585.
    [Google Scholar]
  16. Frazão, C., Silva, G., Gomes, C. M. & 11 other authors ( 2000; ). Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nat Struct Biol 7, 1041–1045.[CrossRef]
    [Google Scholar]
  17. Fridovich, I. ( 1983; ). Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 23, 239–257.[CrossRef]
    [Google Scholar]
  18. Fukui, M. & Takii, S. ( 1990; ). Survival of sulphate-reducing bacteria in oxic surface sediment of a seawater lake. FEMS Microbiol Ecol 73, 317–322.[CrossRef]
    [Google Scholar]
  19. Goldberg, D. M. & Spooner, R. ( 1983; ). Glutathione reductase. In Methods of Enzymatic Analysis, 3rd edn, vol. III, pp. 258–265. Edited by H. U. Bergmeyer. Weinheim: Verlag Chemie.
  20. Görg, A., Boguth, G., Obermaier, C., Posch, A. & Weiss, W. ( 1995; ). Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 16, 1079–1086.[CrossRef]
    [Google Scholar]
  21. Hatchikian, E. C., LeGall, J. & Bell, G. R. ( 1977; ). Significance of superoxide dismutase and catalase activities in the strict anaerobes, sulphate-reducing bacteria. In Superoxide and Superoxide Dismutase, pp. 159–172. Edited by A. M. Michelson, J. M. McCord & I. Fridovich. London: Academic Press.
  22. Hensgens, C. M. H., Vonk, J., Vanbeeumen, J., Vanbruggen, E. F. J. & Hansen, T. A. ( 1993; ). Purification and characterization of an oxygen-labile, NAD-dependent alcohol dehydrogenase from Desulfovibrio gigas. J Bacteriol 175, 2859–2863.
    [Google Scholar]
  23. Hewitt, J. & Morris, J. C. ( 1975; ). Superoxide dismutase in some obligatory anaerobic bacteria. FEBS Lett 50, 315–318.[CrossRef]
    [Google Scholar]
  24. Imlay, J. A. & Linn, S. ( 1988; ). DNA damage and oxygen radical toxicity. Science 240, 1302–1309.[CrossRef]
    [Google Scholar]
  25. Kremer, D. R., Nienhuis-Kuiper, H. E. Timmer C. J. & Hansen, T. A. ( 1989; ). Catabolism of malate and related dicarboxylic acids in various Desulfovibrio strains and the involvement of an oxygen-labile NADPH dehydrogenase. Arch Microbiol 151, 34–39.
    [Google Scholar]
  26. Kuhnigk, T., Branke, J., Krekeler, D., Cypionka, H. & König, H. ( 1996; ). A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol 19, 139–149.[CrossRef]
    [Google Scholar]
  27. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T7. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  28. Laskey, R. A. & Mills, A. D. ( 1975; ). Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem 56, 335–341.[CrossRef]
    [Google Scholar]
  29. LeGall, J. & Xavier, A. V. ( 1996; ). Anaerobes' response to oxygen: the sulphate-reducing bacteria. Anaerobe 2, 1–9.[CrossRef]
    [Google Scholar]
  30. Lemos, R. S., Gomes, C. M., Santana, M., LeGall, J., Xavier, A. V. & Teixeira, M. ( 2001; ). The “strict” anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett 496, 40–43.[CrossRef]
    [Google Scholar]
  31. Lumppio, H. L., Shenvi, N. V., Summers, A. O., Voordouw, G., & Kurtz, D. M., Jr ( 2001; ). Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J Bacteriol 183, 101–108.[CrossRef]
    [Google Scholar]
  32. Manz, W., Eisenbrecher, M., Neu, T. R. & Szewzyk, U. ( 1998; ). Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol 25, 43–61.[CrossRef]
    [Google Scholar]
  33. McCord, J. M. & Fridovich, I. ( 1969; ). Superoxide dismutase: an enzymic function for erythrocuprein. J Biol Chem 244, 6049–6055.
    [Google Scholar]
  34. McCord, J. M., Keele, B. B. & Fridovich, I. ( 1971; ). An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci U S A 68, 1024–1027.[CrossRef]
    [Google Scholar]
  35. Minz, D., Fishbain, S., Green, S. J., Muyzer, G., Cohen, Y., Rittmann, B. E. & Stahl, D. A. ( 1999; ). Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl Environ Microbiol 65, 4659–4665.
    [Google Scholar]
  36. O'Brien, R. W. & Morris, J. G. ( 1971; ). Oxygen and the growth and metabolism of Clostridium acetobutylicum. J Gen Microbiol 68, 307–318.[CrossRef]
    [Google Scholar]
  37. Pan, N. & Imlay, J. ( 2001; ). How does oxygen inhibit central metabolism in the obligate anaerobe Bacteroides thetaiotaomicron? Mol Microbiol 39, 1562–1571.[CrossRef]
    [Google Scholar]
  38. Rocha, E. R., Selby, T., Coleman, J. P. & Smith, C. J. ( 1996; ). Oxidative stress response in an anaerobe, Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide. J Bacteriol 178, 6895–6903.
    [Google Scholar]
  39. Santos, H. & Turner, D. L. ( 1986; ). Characterization of the improved sensitivity obtained using a flow method for oxygenating and mixing cell suspensions in NMR. J Magn Reson 68, 345–349.
    [Google Scholar]
  40. Santos, H., Fareleira, P., Xavier, A. V., Chen, L., Liu, M.-Y. & LeGall, J. ( 1993; ). Aerobic metabolism of carbon reserves by the “obligate anaerobe” Desulfovibrio gigas. Biochem Biophys Res Commun 195, 551–557.[CrossRef]
    [Google Scholar]
  41. Santos, H., Fareleira, P., LeGall, J. & Xavier, A. V. ( 1994; ). In vivo nuclear magnetic resonance in study of physiology of sulfate-reducing bacteria. Methods Enzymol 243, 543–558.
    [Google Scholar]
  42. Sass, H., Cypionka, H. & Babenzien, H.-D. ( 1997; ). Vertical distribution of sulfate reducing bacteria at the oxic–anoxic interface of the oligotrophic Lake Stechlin. FEMS Microbiol Ecol 22, 245–255.[CrossRef]
    [Google Scholar]
  43. Sass, H., Bertchold, M., Branke, J., Köning, H., Cypionka, H. & Babenzien, H.-D. ( 1998; ). Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol 21, 212–219.[CrossRef]
    [Google Scholar]
  44. Silva, G., Oliveira, S., LeGall, J., Xavier, A. V. & Rodrigues-Pousada, C. ( 2001a; ). Analysis of the Desulfovibrio gigas transcriptional unit containing rubredoxin (rd) and rubredoxin-oxygen oxidoreductase (roo) genes and upstream ORFs. Biochem Biophys Res Commun 280, 491–502.[CrossRef]
    [Google Scholar]
  45. Silva, G., LeGall, J., Xavier, A. V., Teixeira, M. & Rodrigues-Pousada, C. ( 2001b; ). Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes. J Bacteriol 183, 4413–4420.[CrossRef]
    [Google Scholar]
  46. Stams, A. J. M. & Hansen, T. A. ( 1982; ). Oxygen-labile l(+)lactate dehydrogenase activity in Desulfovibrio desulfuricans. FEMS Microbiol Lett 13, 389–394.
    [Google Scholar]
  47. Storz, G., Tartaglia, L. A., Farr, S. B. & Ames, B. N. ( 1990; ). Bacterial defense against oxidative stress. Trends Genet 6, 363–368.[CrossRef]
    [Google Scholar]
  48. Studier, F. W. ( 1973; ). Analysis of bacteriphage T7 early RNAs and proteins on slab gels. J Mol Biol 79, 237–248.[CrossRef]
    [Google Scholar]
  49. Teske, A., Ramsing, N. B., Habicht, K., Fukui, M., Küver, J., Jorgensen, B. B. & Cohen, Y. ( 1998; ). Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl Environ Microbiol 64, 2943–2951.
    [Google Scholar]
  50. Tietze, F. ( 1969; ). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27, 502–522.[CrossRef]
    [Google Scholar]
  51. Van Niel, E. W. J., Pedro Gomes, T. M., Willems, A., Collins, M., Prins, R. A. & Gottschal, J. C. ( 1996; ). The role of polyglucose in oxygen-dependent respiration by a new strain of Desulfovibrio salexigens. FEMS Microbiol Ecol 21, 243–253.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26155-0
Loading
/content/journal/micro/10.1099/mic.0.26155-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error