1887

Abstract

Dental diseases are among the most prevalent and costly diseases affecting industrialized societies, and yet are highly preventable. The microflora of dental plaque biofilms from diseased sites is distinct from that found in health, although the putative pathogens can often be detected in low numbers at normal sites. In dental caries, there is a shift towards community dominance by acidogenic and acid-tolerant Gram-positive bacteria (e.g. mutans streptococci and lactobacilli) at the expense of the acid-sensitive species associated with sound enamel. In contrast, the numbers and proportions of obligately anaerobic bacteria, including Gram-negative proteolytic species, increase in periodontal diseases. Modelling studies using defined consortia of oral bacteria grown in planktonic and biofilm systems have been undertaken to identify environmental factors responsible for driving these deleterious shifts in the plaque microflora. Repeated conditions of low pH (rather than sugar availability ) selected for mutans streptococci and lactobacilli, while the introduction of novel host proteins and glycoproteins (as occurs during the inflammatory response to plaque), and the concomitant rise in local pH, enriched for Gram-negative anaerobic and asaccharolytic species. These studies emphasized (a) significant properties of dental plaque as both a biofilm and a microbial community, and (b) the dynamic relationship existing between the environment and the composition of the oral microflora. This research resulted in a novel hypothesis (the ‘ecological plaque hypothesis’) to better describe the relationship between plaque bacteria and the host in health and disease. Implicit in this hypothesis is the concept that disease can be prevented not only by directly inhibiting the putative pathogens, but also by interfering with the environmental factors driving the selection and enrichment of these bacteria. Thus, a more holistic approach can be taken in disease control and management strategies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26082-0
2003-02-01
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/2/mic149279.html?itemId=/content/journal/micro/10.1099/mic.0.26082-0&mimeType=html&fmt=ahah

References

  1. Alexander, M. ( 1971; ). Microbial Ecology. New York: Wiley.
  2. Aly, R. & Maibach, H. ( 1981; ). Microbial interactions on skin. In Skin Microbiology: Relevance to Clinical Infection, pp. 29–39. Edited by H. Maibach & R. Aly. New York: Springer.
  3. Asikainen, S. & Chen, C. ( 1999; ). Oral ecology and person-to-person transmission of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Periodontol 2000 20, 65–81.[CrossRef]
    [Google Scholar]
  4. Birkedal-Hansen, H. ( 1998; ). Links between microbial colonization, inflammatory response and tissue destruction. In Oral Biology at the Turn of the Century: Misconceptions, Truths, Challenges and Prospects, pp. 170–178. Edited by B. Guggenheim & S. Shapiro. Basel: Karger.
  5. Bonass, W. A., Marsh, P. D., Percival, R. S., Aduse-Opoku, J., Hanley, S. A., Devine, D. A. & Curtis, M. A. ( 2000; ). Identification of ragAB as a temperature-regulated operon of Porphyromonas gingivalis W50 using differential display of randomly primed RNA. Infect Immun 68, 4012–4017.[CrossRef]
    [Google Scholar]
  6. Bowden, G. H. ( 1990; ). Microbiology of root surface caries in humans. J Dent Res 69, 1205–1210.[CrossRef]
    [Google Scholar]
  7. Bowden, G. H. W. & Hamilton, I. R. ( 1998; ). Survival of oral bacteria. Crit Rev Oral Biol Med 9, 54–85.[CrossRef]
    [Google Scholar]
  8. Bowden, G. H., Hardie, J. M., McKee, A. S., Marsh, P. D., Fillery, E. D. & Slack, G. L. ( 1976; ). The microflora associated with developing carious lesions of the distal surfaces of the upper first premolars in 13–14 year old children. In Microbial Aspects of Dental Caries, pp. 233–241. Edited by H. M. Stiles, W. J. Loesche & T. C. O'Brien. Washington, DC: Information Retrieval.
  9. Bradshaw, D. J. & Marsh, P. D. ( 1994; ). Effect of sugar alcohols on the composition and metabolism of a mixed culture of oral bacteria grown in a chemostat. Caries Res 28, 251–256.[CrossRef]
    [Google Scholar]
  10. Bradshaw, D. J. & Marsh, P. D. ( 1998; ). Analysis of pH-driven disruption of oral microbial communities in vitro. Caries Res 32, 456–462.[CrossRef]
    [Google Scholar]
  11. Bradshaw, D. J. & Marsh, P. D. ( 1999; ). Use of continuous flow techniques in modeling dental plaque biofilms. Methods Enzymol 310, 279–296.
    [Google Scholar]
  12. Bradshaw, D. J., Marsh, P. D., Watson, G. K. & Cummins, D. ( 1993; ). The effects of triclosan and zinc citrate, alone and in combination, on a community of oral bacteria grown in vitro. J Dent Res 72, 25–30.[CrossRef]
    [Google Scholar]
  13. Bradshaw, D. J., Homer, K. A., Marsh, P. D. & Beighton, D. ( 1994; ). Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140, 3407–3412.[CrossRef]
    [Google Scholar]
  14. Bradshaw, D. J., Marsh, P. D., Allison, C. & Schilling, K. M. ( 1996a; ). Effect of oxygen, inoculum composition and flow rate on development of mixed culture oral biofilms. Microbiology 142, 623–629.[CrossRef]
    [Google Scholar]
  15. Bradshaw, D. J., Marsh, P. D., Schilling, K. M. & Cummins, D. ( 1996b; ). A modified chemostat system to study the ecology of oral biofilms. J Appl Bacteriol 80, 124–130.[CrossRef]
    [Google Scholar]
  16. Bradshaw, D. J., Marsh, P. D., Watson, G. K. & Allison, C. ( 1997; ). Oral anaerobes cannot survive oxygen stress without interacting with aerobic/facultative species as a microbial community. Lett Appl Microbiol 25, 385–387.[CrossRef]
    [Google Scholar]
  17. Bradshaw, D. J., Marsh, P. D., Watson, G. K. & Allison, C. ( 1998; ). Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun 66, 4729–4732.
    [Google Scholar]
  18. Bradshaw, D. J., McKee, A. S. & Marsh, P. D. ( 1989a; ). The use of defined inocula stored in liquid nitrogen for mixed-culture chemostat studies. J Microbiol Methods 9, 123–128.[CrossRef]
    [Google Scholar]
  19. Bradshaw, D. J., McKee, A. S. & Marsh, P. D. ( 1989b; ). Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro. J Dent Res 68, 1298–1302.[CrossRef]
    [Google Scholar]
  20. Bradshaw, D. J., McKee, A. S. & Marsh, P. D. ( 1990; ). Prevention of population shifts in oral microbial communities in vitro by low fluoride concentrations. J Dent Res 69, 436–441.[CrossRef]
    [Google Scholar]
  21. Bradshaw, D. J., Marsh, P. D., Hodgson, R. J. & Visser, J. M. ( 2002; ). Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Caries Res 36, 81–86.[CrossRef]
    [Google Scholar]
  22. Brailsford, S. R., Shah, B., Simins, D., Gilbert, S., Clark, D., Ines, I., Adama, S. E., Allison, C. & Beighton, D. ( 2001; ). The predominant aciduric microflora of root-caries lesions. J Dent Res 80, 1828–1833.[CrossRef]
    [Google Scholar]
  23. Busscher, H. J. & van der Mei, H. C. ( 1997; ). Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res 11, 24–32.[CrossRef]
    [Google Scholar]
  24. Busscher, H. J. & van der Mei, H. C. ( 2000; ). Initial microbial adhesion events: mechanisms and implications. In Community Structure and Co-operation in Biofilms (Society for General Microbiology symposium no. 59), pp. 25–36. Edited by D. G. Allison, P. Gilbert, H. M. Lappin-Scott and M. Wilson. Cambridge: Cambridge University Press.
  25. Codd, G. A. ( 1995; ). Cyanobacterial toxins: occurrence, properties and biological significance. Water Sci Technol 32, 149–156.
    [Google Scholar]
  26. Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M. & Marrie, T. J. ( 1987; ). Bacterial biofilms in nature and disease. Annu Rev Microbiol 41, 435–464.[CrossRef]
    [Google Scholar]
  27. Costerton, J. W., Lewandowski, Z., DeBeer, D., Caldwell, D. E., Korber, D. R. & James, G. ( 1994; ). Biofilms, the customized microniche. J Bacteriol 176, 2137–2142.
    [Google Scholar]
  28. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. ( 1995; ). Microbial biofilms. Annu Rev Microbiol 49, 711–745.[CrossRef]
    [Google Scholar]
  29. Cummins, D. ( 1991; ). Zinc citrate/triclosan: a new anti-plaque system for the control of plaque and the prevention of gingivitis: short-term clinical and mode of action studies. J Clin Periodontol 18, 455–461.[CrossRef]
    [Google Scholar]
  30. Curtis, M. A., Aduse-Opoku, J. & Rangarajan, M. ( 2001; ). Cysteine proteases of Porphyromonas gingivalis. Crit Rev Oral Biol Med 12, 192–216.[CrossRef]
    [Google Scholar]
  31. Darveau, R. P., Tanner, A. & Page, R. C. ( 1997; ). The microbial challenge in periodontitis. Periodontol 2000 14, 12–32.[CrossRef]
    [Google Scholar]
  32. Dewhirst, F. E., Tamer, M. A., Ericson, R. E., Lau, C. N., Levanos, V. A., Boches, S. K., Galvin, J. L. & Paster, B. J. ( 2000; ). The diversity of periodontal spirochetes by 16S rRNA analysis. Oral Microbiol Immunol 15, 196–202.[CrossRef]
    [Google Scholar]
  33. Di Murro, C., Paolantonio, M., Pedrazzoli, V., Lopatin, D. E. & Cattabriga, M. ( 1997; ). Occurrence of Porphyromonas gingivalis, Bacteroides forsythus and Treponema denticola in periodontally healthy and diseased subjects as determined by an ELISA technique. J Periodontol 68, 18–23.[CrossRef]
    [Google Scholar]
  34. Edgar, W. M. & Dodds, M. W. ( 1985; ). The effect of sweeteners on acid production in plaque. Int Dent J 35, 18–22.
    [Google Scholar]
  35. Edgar, W. M. & O'Mullane, D. M. ( 1996; ). Saliva and Dental Health. London: British Dental Journal.
  36. Eggert, F. M., Drewell, L., Bigelow, J. A., Speck, J. E. & Goldner, M. ( 1991; ). The pH of gingival crevices and periodontal pockets in children, teenagers and adults. Arch Oral Biol 36, 233–238.[CrossRef]
    [Google Scholar]
  37. Ellwood, D. C. & Hunter, J. R. ( 1976; ). The mouth as a chemostat. In Continuous Culture 6: Applications and New Fields, pp. 270–282. Edited by A. C. R. Dean, D. C. Ellwood, C. G. T. Evans & J. Melling. Chichester: Ellis Horwood.
  38. Ellwood, D. C., Phipps, P. J. & Hamilton, I. R. ( 1979; ). Effect of growth rate and glucose concentration on the activity of the phosphoenolpyruvate phosphotransferase system in Streptococcus mutans Ingbritt grown in continuous culture. Infect Immun 23, 224–231.
    [Google Scholar]
  39. Foster, J. W. ( 1995; ). Low pH adaptation and the acid tolerance response in Salmonella typhimurium. Crit Rev Microbiol 21, 215–237.[CrossRef]
    [Google Scholar]
  40. Glenister, D. A., Salamon, K. E., Smith, K., Beighton, D. & Keevil, C. W. ( 1988; ). Enhanced growth of complex communities of dental plaque bacteria in mucin-limited continuous culture. Microb Ecol Health Dis 1, 31–38.[CrossRef]
    [Google Scholar]
  41. Gmür, R. & Guggenheim, B. ( 1994; ). Interdental supragingival plaque – a natural habitat of Actinobacillus actinomycetemcomitans, Bacteroides forsythus, Campylobacter rectus and Prevotella nigrescens. J Dent Res 73, 1421–1428.
    [Google Scholar]
  42. Greenstein, G. & Lamster, I. ( 1997; ). Bacterial transmission in periodontal diseases: a critical review. J Periodontol 68, 421–431.[CrossRef]
    [Google Scholar]
  43. Grenby, T. H. & Saldanha, M. G. ( 1986; ). Studies of the inhibitory action of intense sweeteners on oral microorganisms relating to dental health. Caries Res 20, 7–16.[CrossRef]
    [Google Scholar]
  44. Hall, H. K., Karem, K. L. & Foster, J. W. ( 1995; ). Molecular responses of microbes to environmental pH stress. Adv Microb Physiol 37, 229–272.
    [Google Scholar]
  45. Hamilton, I. R. ( 1987; ). Effects of changing environment on sugar transport and metabolism by oral bacteria. In Sugar Transport and Metabolism in Gram-positive Bacteria, pp. 94–133. Edited by A. Reizer & A. Peterkofsky. Chichester: Ellis Horwood.
  46. Hamilton, I. R., Phipps, P. J. & Ellwood, D. C. ( 1979; ). Effect of growth rate and glucose concentration on the biochemical properties of Streptococcus mutans Ingbritt in continuous culture. Infect Immun 26, 861–869.
    [Google Scholar]
  47. Homer, K. A. & Beighton, D. ( 1992; ). Synergistic degradation of bovine serum albumin by mutans streptococci and other dental plaque bacteria. FEMS Microbiol Lett 90, 259–262.[CrossRef]
    [Google Scholar]
  48. Jenkinson, H. F. & Lamont, R. J. ( 1997; ). Streptococcal adhesion and colonization. Crit Rev Oral Biol Med 8, 175–200.[CrossRef]
    [Google Scholar]
  49. Jensen, M. E. & Schachtele, C. F. ( 1983; ). Plaque pH measurements by different methods on the buccal and approximal surfaces of human teeth after a sucrose rinse. J Dent Res 62, 1058–1061.[CrossRef]
    [Google Scholar]
  50. Kinniment, S. L., Wimpenny, J. W. T., Adams, D. & Marsh, P. D. ( 1996a; ). Development of a steady-state microbial biofilm community using the constant depth film fermenter. Microbiology 142, 631–638.[CrossRef]
    [Google Scholar]
  51. Kinniment, S. L., Wimpenny, J. W. T., Adams, D. & Marsh, P. D. ( 1996b; ). The effect of chlorhexidine on defined, mixed culture oral biofilms grown in a novel model system. J Appl Bacteriol 81, 120–125.[CrossRef]
    [Google Scholar]
  52. Kisby, L. E., Savitt, E. D., French, C. K. & Peros, W. J. ( 1989; ). DNA probe detection of key periodontal pathogens in juveniles. J Pedod 13, 222–230.
    [Google Scholar]
  53. Kolenbrander, P. E. & London, J. ( 1993; ). Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 175, 3247–3252.
    [Google Scholar]
  54. Kolenbrander, P. E., Andersen, R. N., Kazmerak, K. M. & Palmer, R. J. ( 2000; ). Coaggregation and coadhesion in oral biofilms. In Community Structure and Co-operation in Biofilms (Society for General Microbiology symposium no. 59), pp. 65–85. Edited by D. G. Allison, P. Gilbert, H. M. Lappin-Scott & M. Wilson. Cambridge: Cambridge University Press.
  55. Kroes, I., Lepp, P. W. & Relman, D. A. ( 1999; ). Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci U S A 96, 14547–14552.[CrossRef]
    [Google Scholar]
  56. Lacey, R. W., Lord, V. L., Howson, G. L., Luxton, D. E. A. & Trotter, I. S. ( 1983; ). Double-blind study to compare the selection of antibiotic resistance by amoxycillin or cephradine in the commensal flora. Lancet ii, 529–532.
    [Google Scholar]
  57. Lamont, R. J. & Jenkinson, H. F. ( 2000; ). Adhesion as an ecological determinant in the oral cavity. In Oral Bacterial Ecology: the Molecular Basis, pp. 131–168. Edited by H. K. Kuramitsu & R. P. Ellen. Wymondham: Horizon Scientific Press.
  58. Loesche, W. J. ( 1976; ). Chemotherapy of dental plaque infections. Oral Sci Rev 9, 63–107.
    [Google Scholar]
  59. Loesche, W. J. ( 1986; ). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50, 353–380.
    [Google Scholar]
  60. Marquis, R. E. ( 1995a; ). Antimicrobial actions of fluoride for oral bacteria. Can J Microbiol 41, 955–964.[CrossRef]
    [Google Scholar]
  61. Marquis, R. E. ( 1995b; ). Oxygen metabolism, oxidative stress and acid-base physiology of dental plaque biofilms. J Ind Microbiol 15, 198–207.[CrossRef]
    [Google Scholar]
  62. Marsh, P. D. ( 1989; ). Host defenses and microbial homeostasis: role of microbial interactions. J Dent Res 68, 1567–1575.
    [Google Scholar]
  63. Marsh, P. D. ( 1991; ). Sugar, fluoride, pH and microbial homeostasis in dental plaque. Proc Finn Dent Soc 87, 515–525.
    [Google Scholar]
  64. Marsh, P. D. ( 1994; ). Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8, 263–271.
    [Google Scholar]
  65. Marsh, P. D. ( 1995; ). The role of continous culture in modelling the human microflora. J Chem Tech Biotech 64, 1–9.[CrossRef]
    [Google Scholar]
  66. Marsh, P. D. ( 1998; ). The control of oral biofilms: new approaches for the future. In Oral Biology at the Turn of the Century: Misconceptions, Truths, Challenges and Prospects, pp. 22–31. Edited by B. Guggenheim & S. Shapiro. Basel: Karger.
  67. Marsh, P. D. ( 1999; ). Microbiologic aspects of dental plaque and dental caries. Dent Clin North Am 43, 599–614.
    [Google Scholar]
  68. Marsh, P. D. ( 2000a; ). Role of the oral microflora in health. Microb Ecol Health Dis 12, 130–137.[CrossRef]
    [Google Scholar]
  69. Marsh, P. D. ( 2000b; ). Oral ecology and its impact on oral microbial diversity. In Oral Bacterial Ecology: the Molecular Basis, pp. 11–65. Edited by H. K. Kuramitsu & R. P. Ellen. Wymondham: Horizon Scientific Press.
  70. Marsh, P. D. & Bowden, G. H. W. ( 2000; ). Microbial community interactions in biofilms. In Community Structure and Co-operation in Biofilms (Society for General Microbiology symposium no. 59), pp. 167–198. Edited by D. G. Allison, P. Gilbert, H. M. Lappin-Scott & M. Wilson. Cambridge: Cambridge University Press.
  71. Marsh, P. D. & Bradshaw, D. J. ( 1997; ). Physiological approaches to plaque control. Adv Dent Res 11, 176–185.[CrossRef]
    [Google Scholar]
  72. Marsh, P. D. & Bradshaw, D. J. ( 1998; ). Dental plaque: community spirit in action. In Microbial Pathogenesis: Current and Emerging Issues, pp. 41–53. Edited by D. J. LeBlanc, M. S. Lanz & L. M. Switalski. Indianapolis, IN: University of Indiana.
  73. Marsh, P. D. & Bradshaw, D. J. ( 1999; ). Microbial community aspects of dental plaque. In Dental Plaque Revisited, pp. 237–253. Edited by H. N. Newman & M. Wilson. Cardiff: BioLine.
  74. Marsh, P. D. & Martin, M. V. ( 1999; ). Oral Microbiology, 4th edn. Bristol: Wright.
  75. Marsh, P. D., Hunter, J. R., Bowden, G. H., Hamilton, I. R., McKee, A. S., Hardie, J. M. & Ellwood, D. C. ( 1983a; ). The influence of growth rate and nutrient limitation on the microbial composition and biochemical properties of a mixed culture of oral bacteria grown in a chemostat. J Gen Microbiol 129, 755–770.
    [Google Scholar]
  76. Marsh, P. D., Keevil, C. W., McDermid, A. S., Williamson, M. I. & Ellwood, D. C. ( 1983b; ). Inhibition by the antimicrobial agent chlorhexidine of acid production and sugar transport in oral streptococcal bacteria. Arch Oral Biol 28, 233–240.[CrossRef]
    [Google Scholar]
  77. Marsh, P. D., McDermid, A. S., Keevil, C. W. & Ellwood, D. C. ( 1985; ). Environmental regulation of carbohydrate metabolism by Streptococcus sanguis NCTC 7865 grown in a chemostat. J Gen Microbiol 131, 2505–2514.
    [Google Scholar]
  78. Marsh, P. D., Featherstone, A., McKee, A. S., Hallsworth, A. S., Robinson, C., Weatherell, J. A., Newman, H. N. & Pitter, A. F. ( 1989; ). A microbiological study of early caries of approximal surfaces in schoolchildren. J Dent Res 68, 1151–1154.[CrossRef]
    [Google Scholar]
  79. Marsh, P. D., McKee, A. S. & McDermid, A. S. ( 1993; ). Continuous culture studies. In Biology of the Species Porphyromonas gingivalis, pp. 105–123. Edited by H. N. Shah, D. Mayrand & R. J. Genco. Boca Raton, FL: CRC Press.
  80. Marsh, P. D., McDermid, A. S., McKee, A. S. & Baskerville, A. ( 1994; ). The effect of growth rate and haemin on the virulence and proteolytic activity of Porphyromonas gingivalis W50. Microbiology 140, 861–865.[CrossRef]
    [Google Scholar]
  81. Marsh, P. D., Bradshaw, D. J., Watson, G. K., Moore, S. J. & Brading, M. ( 2002; ). Effect of a redox agent on obligate anaerobes in oral microbial communities. J Dent Res 81, A-363.
    [Google Scholar]
  82. McDermid, A. S., McKee, A. S., Ellwood, D. C. & Marsh, P. D. ( 1986; ). The effect of lowering the pH on the composition and metabolism of a community of nine oral bacteria grown in a chemostat. J Gen Microbiol 132, 1205–1214.
    [Google Scholar]
  83. McDermid, A. S., McKee, A. S. & Marsh, P. D. ( 1987; ). A mixed-culture chemostat system to predict the effect of anti-microbial agents on the oral flora: preliminary studies using chlorhexidine. J Dent Res 66, 1315–1320.[CrossRef]
    [Google Scholar]
  84. McDermid, A. S., McKee, A. S. & Marsh, P. D. ( 1988; ). Effect of environmental pH on enzyme activity and growth of Bacteroides gingivalis W50. Infect Immun 56, 1096–1100.
    [Google Scholar]
  85. McFarland, L. V. ( 2000; ). Normal flora: diversity and functions. Microb Ecol Health Dis 12, 193–207.[CrossRef]
    [Google Scholar]
  86. McKee, A. S., McDermid, A. S., Ellwood, D. C. & Marsh, P. D. ( 1985; ). The establishment of reproducible, complex communities of oral bacteria in the chemostat using defined inocula. J Appl Bacteriol 59, 263–275.[CrossRef]
    [Google Scholar]
  87. McKee, A. S., McDermid, A. S., Baskerville, A., Dowsett, A. B., Ellwood, D. C. & Marsh, P. D. ( 1986; ). Effect of haemin on the physiology and virulence of Bacteroides gingivalis W50. Infect Immun 52, 349–355.
    [Google Scholar]
  88. Moore, W. E. C. & Moore, L. V. H. ( 1994; ). The bacteria of periodontal diseases. Periodontol 2000 5, 66–77.[CrossRef]
    [Google Scholar]
  89. Newman, H. N. ( 1990; ). Plaque and chronic inflammatory disease. J Clin Periodontol 17, 533–541.[CrossRef]
    [Google Scholar]
  90. Ower, P. C., Ciantar, M., Newman, H. N., Wilson, M. & Bulman, J. S. ( 1995; ). The effects on chronic periodontitis of a subgingivally-placed redox agent in a slow release device. J Clin Periodontol 22, 494–500.[CrossRef]
    [Google Scholar]
  91. Paster, B. J., Bosches, S. K., Galvin, J. L., Ericson, R. E., Lau, C. N., Levanos, V. A., Sahasrabudhe, A. & Dewhirst, F. E. ( 2001; ). Bacterial diversity in human subgingival plaque. J Bacteriol 183, 3770–3783.[CrossRef]
    [Google Scholar]
  92. Percival, R. S., Marsh, P. D., Devine, D. A., Rangarajan, M., Aduse-Opoku, J., Shepherd, P. & Curtis, M. A. ( 1999; ). Effect of temperature on growth, hemagglutination and protease activity of Porphyromonas gingivalis. Infect Immun 67, 1917–1921.
    [Google Scholar]
  93. Rosebury, T. ( 1962; ). Micro-organisms Indigenous to Man. New York: McGraw-Hill.
  94. Sanders, W. E. & Sanders, C. C. ( 1984; ). Modification of normal flora by antibiotics: effects on individuals and the environment. In New Dimensions in Antimicrobial Chemotherapy, pp. 217–241. Edited by R. K. Koot & M. A. Sande. New York: Churchill Livingstone.
  95. Sansone, C., van Houte, J., Joshipura, K., Kent, R. & Margolis, H. C. ( 1993; ). The association of mutans streptococci and non-mutans streptococci capable of acidogenesis at a low pH with dental caries on enamel and root surfaces. J Dent Res 72, 508–516.[CrossRef]
    [Google Scholar]
  96. Scannapieco, F. A. ( 1994; ). Saliva–bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med 5, 203–248.
    [Google Scholar]
  97. Socransky, S. S., Hafferjee, A. D., Cugini, M. A., Smith, C. & Kent, R. L. ( 1998; ). Microbial complexes in subgingival plaque. J Clin Peridontol 25, 134–144.[CrossRef]
    [Google Scholar]
  98. Socransky, S. S., Haffajee, A. D., Ximenez-Fyvie, L. A., Feres, M. & Mager, D. ( 1999; ). Ecological considerations in the treatment of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis periodontal infections. Periodontol 2000 20, 341–362.[CrossRef]
    [Google Scholar]
  99. Svensater, G., Welin, J., Wilkins, J. C., Beighton, D. & Hamilton, I. R. ( 2001; ). Protein expression by planktonic and biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 205, 139–146.[CrossRef]
    [Google Scholar]
  100. Tanner, A. C., Milgrom, P. M., Kent, R., Mokeem, S. A., Page, R. C., Riedy, C. A., Weinstein, P. & Bruss, J. ( 2002; ). The microbiota of young children from tooth and tongue samples. J Dent Res 81, 53–57.[CrossRef]
    [Google Scholar]
  101. Tannock, G. ( 1995; ). Normal Microflora: an Introduction to Microbes Inhabiting the Human Body. London: Chapman and Hall.
  102. ten Cate, J. M. ( 2001; ). Consensus statements on fluoride usage and associated research questions. Caries Res 35 (suppl 1), 71–73.
    [Google Scholar]
  103. ter Steeg, P. F., van der Hoeven, J. S., de Jong, M. H., van Munster, P. J. J. & Jansen, M. J. H. ( 1987; ). Enrichment of subgingival microflora on human serum leading to accumulation of Bacteroides species, peptostreptococci and fusobacteria. Antonie van Leeuwenhoek 53, 261–272.[CrossRef]
    [Google Scholar]
  104. Theilade, E. ( 1986; ). The non-specific theory in microbial etiology of inflammatory periodontal diseases. J Clin Periodontol 13, 905–911.[CrossRef]
    [Google Scholar]
  105. Uematsu, H. & Hoshino, E. ( 1992; ). Predominant obligate anaerobes in human periodontal pockets. J Periodont Res 27, 15–19.[CrossRef]
    [Google Scholar]
  106. Vroom, J. M., de Grauw, K. J., Gerritsen, H. C., Bradshaw, D. J., Marsh, P. D., Watson, G. K., Allison, C. & Birmingham, J. J. ( 1999; ). Depth penetration and detection of pH gradients in biofilms using two-photon excitation microscopy. Appl Environ Microbiol 65, 3502–3511.
    [Google Scholar]
  107. Whittaker, C. J., Klier, C. M. & Kolenbrander, P. E. ( 1996; ). Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50, 513–552.[CrossRef]
    [Google Scholar]
  108. Wilkins, J. C., Homer, K. A. & Beighton, D. ( 2002; ). Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol 68, 2382–2390.[CrossRef]
    [Google Scholar]
  109. Woodman, A. J., Vidic, J., Newman, H. N. & Marsh, P. D. ( 1985; ). Effect of repeated high dose prophylaxis with amoxycillin on the resident oral flora of adult volunteers. J Med Microbiol 19, 15–23.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26082-0
Loading
/content/journal/micro/10.1099/mic.0.26082-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error