1887

Abstract

F1 can assimilate benzene, toluene and ethylbenzene using the toluene degradation pathway, and can also utilize -cymene via -cumate using the -cymene and -cumate catabolic pathways. In the present study, F1 strains were isolated that were adapted to assimilate new substrates such as -propylbenzene, -butylbenzene, cumene and biphenyl, and the molecular mechanisms of genetic adaptation to an expanded range of aromatic hydrocarbons were determined. Nucleotide sequence analyses showed that the selected strains have mutations in the gene but not in gene. The impairment of the repressor CymR by mutation led to the constitutive expression of CmtE, a -cleavage product hydrolase from the operon. This study also showed that CmtE has a broad range of substrates and can hydrolyse -cleavage products formed from biphenyl and other new growth substrates via the toluene degradation pathway. However, the artificially constructed strain F1( : : Tc) and a recombinant F1, which expressed CmtE constitutively, could not grow on the new substrates. The adapted strains possess the operon, which is induced by new growth substrates that are poor inducers of wild-type F1. When the gene from the adapted strains was introduced in a manner to F1( : : Tc), the resulting recombinant strains were able to grow on biphenyl and other new substrates. This finding indicates that the TodS sensor was altered to recognize these substrates and this conclusion was confirmed by nucleotide sequence analyses. Amino acid substitutions were found in the regions corresponding to the receiver domain and the second PAS domain and their boundaries in the TodS protein. These results showed that F1 adapted strains capable of growth on -propylbenzene, -butylbenzene, cumene and biphenyl possess mutations to employ CmtE and to induce the catabolic operon by the new growth substrates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26046-0
2003-03-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/3/mic149795.html?itemId=/content/journal/micro/10.1099/mic.0.26046-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1990; ). Current Protocols in Molecular Biology. New York: Wiley.
  2. Cho, M. C., Kang, D.-O., Yoon, B. D. & Lee, K. ( 2000; ). Toluene degradation pathway from Pseudomonas putida F1: substrate specificity and gene induction by 1-substituted benzenes. J Ind Microbiol Biotechnol 25, 163–170.[CrossRef]
    [Google Scholar]
  3. Coschigano, P. W. & Young, L. Y. ( 1997; ). Identification and sequence analysis of two regulatory genes involved in anaerobic toluene metabolism by strain T1. Appl Environ Microbiol 63, 652–660.
    [Google Scholar]
  4. de Lorenzo, V. & Perez-Martin, J. ( 1996; ). Regulatory noise in prokaryotic promoters: how bacteria learn to respond to novel environmental signals. Mol Microbiol 19, 1177–1184.[CrossRef]
    [Google Scholar]
  5. Dennis, J. J. & Zylstra, G. J. ( 1998; ). Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol 64, 2710–2715.
    [Google Scholar]
  6. Diaz, E. & Prieto, M. A. ( 2000; ). Bacterial promoters triggering biodegradation of aromatic pollutants. Curr Opin Biotechnol 11, 467–475.[CrossRef]
    [Google Scholar]
  7. Duggleby, C. J. & Williams, P. A. ( 1986; ). Purification and some properties of the 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase (2-hydroxymuconic semialdehyde hydrolase) encoded by the TOL plasmid pWW0 from Pseudomonas putida mt-2. J Gen Microbiol 132, 717–726.
    [Google Scholar]
  8. Eaton, R. W. ( 1996; ). p-Cumate catabolic pathway in Pseudomonas putida Fl: cloning and characterization of DNA carrying the cmt operon. J Bacteriol 178, 1351–1362.
    [Google Scholar]
  9. Eaton, R. W. ( 1997; ). p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 179, 3171–3180.
    [Google Scholar]
  10. Fellay, R., Krisch, H. M., Prentki, P. & Frey, J. ( 1989; ). Omegon-Km: a transposable element designed for in vivo insertional mutagenesis and cloning of genes in gram-negative bacteria. Gene 76, 215–226.[CrossRef]
    [Google Scholar]
  11. Figurski, D. H. & Helinski, D. R. ( 1979; ). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76, 1648–1652.[CrossRef]
    [Google Scholar]
  12. Finette, B. A., Subramanian, V. & Gibson, D. T. ( 1984; ). Isolation and characterization of Pseudomonas putida PpF1 mutants defective in the toluene dioxygenase enzyme system. J Bacteriol 160, 1003–1009.
    [Google Scholar]
  13. Furukawa, K., Hirose, J., Suyama, A., Zaiki, T. & Hayashida, S. ( 1993; ). Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J Bacteriol 175, 5224–5232.
    [Google Scholar]
  14. Gibson, D. T., Koch, J. R. & Kallio, R. E. ( 1968; ). Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7, 2653–2662.[CrossRef]
    [Google Scholar]
  15. Gibson, D. T., Hensley, M., Yoshioka, H. & Mabry, T. J. ( 1970; ). Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry 9, 1626–1630.[CrossRef]
    [Google Scholar]
  16. Gibson, D. T., Zylstra, G. J. & Chauhan, S. ( 1990; ). Biotransformations catalyzed by toluene dioxygenase from Pseudomonas putida F1. In Pseudomonas: Biotransformations, Pathogensis and Evolving Biotechnology, pp. 121–132. Edited by S. Silver, A. M. Chakrabarty, B. Iglewski & S. Kaplan. Washington DC: American Society for Microbiology.
  17. Habe, H., Ide, K., Yotsumoto, M., Tsuji, H., Yoshida, T., Nojiri, H. & Omori, T. ( 2002; ). Degradation characteristics of a dibenzofuran-degrader Terrabacter sp. strain DBF63 toward chlorinated dioxins in soil. Chemosphere 48, 201–207.[CrossRef]
    [Google Scholar]
  18. Hillen, W. & Berens, C. ( 1994; ). Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu Rev Microbiol 48, 345–369.[CrossRef]
    [Google Scholar]
  19. Hoch, J. A. & Silhavy, T. J. ( 1995; ). Two-Component Signal Transduction. Washington DC. American Society for Microbiology.
  20. Hofer, B., Eltis, L. D., Dowling, D. N. & Timmis, K. N. ( 1993; ). Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 130, 47–55.[CrossRef]
    [Google Scholar]
  21. Iida, T., Mukouzaka, Y., Nakamura, K., Yamaguchi, I. & Kudo, T. ( 2002; ). Isolation and characterization of dibenzofuran-degrading actinomycetes: analysis of multiple extradiol dioxygenase genes in dibenzofuran-degrading Rhodococcus species. Biosci Biotechnol Biochem 66, 1462–1472.[CrossRef]
    [Google Scholar]
  22. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., Jr. & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  23. Lau, P. C., Wang, Y., Patel, A., Labbe, D., Bergeron, H., Brousseau, R., Konishi, Y. & Rawlings, M. ( 1997; ). A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc Natl Acad Sci U S A 94, 1453–1458.[CrossRef]
    [Google Scholar]
  24. Leuthner, B. & Heider, J. ( 1998; ). A two-component system involved in regulation of anaerobic toluene metabolism in Thauera aromatica. FEMS Microbiol Lett 166, 35–41.[CrossRef]
    [Google Scholar]
  25. Menn, F. M., Zylstra, G. J. & Gibson, D. T. ( 1991; ). Location and sequence of the todF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1. Gene 104, 91–94.[CrossRef]
    [Google Scholar]
  26. Miller, W. G., Leveau, J. H. & Lindow, S. E. ( 2000; ). Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant–Microbe Interact 13, 1243–1250.[CrossRef]
    [Google Scholar]
  27. Mondello, F. J. ( 1989; ). Cloning and expression in Escherichia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. J Bacteriol 171, 1725–1732.
    [Google Scholar]
  28. Mosqueda, G., Ramos-Gonzalez, M. I. & Ramos, J. L. ( 1999; ). Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene 232, 69–76.[CrossRef]
    [Google Scholar]
  29. Ohta, Y., Maeda, M. & Kudo, T. ( 2001; ). Pseudomonas putida CE2010 can degrade biphenyl by a mosaic pathway encoded by the tod operon and cmtE, which are identical to those of P. putida F1 except for a single base difference in the operator–promoter region of the cmt operon. Microbiology 147, 31–41.
    [Google Scholar]
  30. O'Leary, N. D., Duetz, W. A., Dobson, A. D. & O'Connor, K. E. ( 2002; ). Induction and repression of the sty operon in Pseudomonas putida CA-3 during growth on phenylacetic acid under organic and inorganic nutrient-limiting continuous culture conditions. FEMS Microbiol Lett 208, 263–268.[CrossRef]
    [Google Scholar]
  31. Ouahrani-Bettache, S., Porte, F., Teyssier, J., Liautard, J. P. & Köhler, S. ( 1999; ). pBBR1-GFP: a broad-host-range vector for prokaryotic promoter studies. Biotechniques 26, 620–622.
    [Google Scholar]
  32. Panke, S., de Lorenzo, V., Kaiser, A., Witholt, B. & Wubbolts, M. G. ( 1999; ). Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl Environ Microbiol 65, 5619–5623.
    [Google Scholar]
  33. Parales, R. E. & Harwood, C. S. ( 1993; ). Construction and use of a new broad-host-range lacZ transcriptional fusion vector, pHRP309, for Gram bacteria. Gene 133, 23–30.[CrossRef]
    [Google Scholar]
  34. Parales, R. E., Ditty, J. L. & Harwood, C. S. ( 2000; ). Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66, 4098–4104.[CrossRef]
    [Google Scholar]
  35. Reizer, J. & Saier, M. H., Jr ( 1997; ). Modular multidomain phosphoryl transfer proteins of bacteria. Curr Opin Struct Biol 7, 407–415.[CrossRef]
    [Google Scholar]
  36. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
  37. Santos, P. M., Blatny, J. M., Di Bartolo, I., Valla, S. & Zennaro, E. ( 2000; ). Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST. Appl Environ Microbiol 66, 1305–1310.[CrossRef]
    [Google Scholar]
  38. Seah, S. Y., Terracina, G., Bolin, J. T., Riebel, P., Snieckus, V. & Eltis, L. D. ( 1998; ). Purification and preliminary characterization of a serine hydrolase involved in the microbial degradation of polychlorinated biphenyls. J Biol Chem 273, 22943–22949.[CrossRef]
    [Google Scholar]
  39. Stanier, R. Y., Palleroni, N. J. & Doudoroff, M. ( 1966; ). The aerobic pseudomonads: a taxomonic study. J Gen Microbiol 43, 159–271.[CrossRef]
    [Google Scholar]
  40. Suarez, A., Guttler, A., Stratz, M., Staendner, L. H., Timmis, K. N. & Guzman, C. A. ( 1997; ). Green fluorescent protein-based reporter systems for genetic analysis of bacteria including monocopy applications. Gene 196, 69–74.[CrossRef]
    [Google Scholar]
  41. Taylor, B. L. & Zhulin, I. B. ( 1999; ). PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63, 479–506.
    [Google Scholar]
  42. van der Meer, J. R., de Vos, W. M., Harayama, S. & Zehnder, A. J. B. ( 1992; ). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56, 677–694.
    [Google Scholar]
  43. Velasco, A., Alonso, S., Garcia, J. L., Perera, J. & Diaz, E. ( 1998; ). Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol 180, 1063–1071.
    [Google Scholar]
  44. Wang, Y., Rawlings, M., Gibson, D. T., Labbe, D., Bergeron, H., Brousseau, R. & Lau, P. C. ( 1995; ). Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol Gen Genet 246, 570–579.[CrossRef]
    [Google Scholar]
  45. Zhulin, I. B., Taylor, B. L. & Dixon, R. ( 1997; ). PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci 22, 331–333.[CrossRef]
    [Google Scholar]
  46. Zylstra, G. J. & Gibson, D. T. ( 1989; ). Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem 264, 14940–14946.
    [Google Scholar]
  47. Zylstra, G. J., McCombie, W. R., Gibson, D. T. & Finette, B. A. ( 1988; ). Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol 54, 1498–1503.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26046-0
Loading
/content/journal/micro/10.1099/mic.0.26046-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error