1887

Abstract

Mimosine is a toxin present in the tree-legume leucaena (), including its root nodules and the root exudates. The leucaena-nodulating sp. strain TAL1145 degrades mimosine (Mid) and utilizes it as a source of carbon and nitrogen. Twelve TAL1145 mutants defective in mimosine degradation (Mid) were made through Tn3Ho, Tn or kanamycin-resistance-cassette insertions. A 5·0 kb I fragment of TAL1145, subcloned from a cosmid clone containing genes for mimosine degradation, complemented most of the Mid mutants. Sequencing this fragment and the adjacent 0·9 kb I fragment identified five genes, , , , and , of which the first three genes encode ABC transporter proteins involved in mimosine uptake, while encodes an aminotransferase required for degrading mimosine into 3-hydroxy-4-pyridone, and is a regulatory gene encoding a LysR-type transcriptional activator. The location of MidA in the periplasm was shown by making two  : :  fusions, which made active alkaline phosphatase in the periplasm. The various  : :  and  : :  fusions were inducible by mimosine, and a  : :  fusion mutant showed β-glucuronidase activity in the leucaena nodules, indicating that is expressed in the nodules. Similarly, a  : :  fusion expressed alkaline phosphatase activity in the leucaena nodules, indicating that mimosine induces transcription in the bacteroids. genes are specific for the Mid strains of leucaena and are absent in strains of other , and spp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25954-0
2003-02-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/2/mic149537.html?itemId=/content/journal/micro/10.1099/mic.0.25954-0&mimeType=html&fmt=ahah

References

  1. Allaway D, Schofield N. A, Leonard M. E, Gilardoni L, Finan T. M., Poole P. S. 2001; Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes. Environ Microbiol3:397–406
    [Google Scholar]
  2. Beringer J. E, Beynon J. L, Buchanan-Wollaston A. V, Hirsch P. R., Johnston A. W. B. 1978; Introduction of drug resistance transposon Tn 5 into Rhizobium. Nature276:633–634
    [Google Scholar]
  3. Boivin C, Camut S, Malpica C. A, Truchet G., Rosenberg C. 1990; Rhizobium meliloti genes encoding catabolism of trigonelline are induced under symbiotic conditions. Plant Cell2:1157–1170
    [Google Scholar]
  4. Borthakur D., Gao X. 1996; A 150-MDa plasmid in Rhizobium etli strain TAL182 contains genes for nodulation competitiveness on Phaseolus vulgaris L. Can J Microbiol42:903–910
    [Google Scholar]
  5. Borthakur D., Soedarjo M. 1999; Isolation and characterization of a DNA fragment containing genes for mimosine degradation from Rhizobium sp. strain TAL1145. In Highlights of Nitrogen Fixation Research pp91–95 Edited by Martinez E., Hernández G.. New York: Kluwer/Plenum;
    [Google Scholar]
  6. Ditta G, Schmidhauser T, Yakobson E, Lu P, Liang X.-W, Finlay D. R., Helinski D. R. 1985; Plasmids related to the broad host range vector pRK290, useful for gene cloning and monitoring gene expression. Plasmid 13:149–153
    [Google Scholar]
  7. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function in trans. Proc Natl Acad Sci U S A76:1648–1652
    [Google Scholar]
  8. Fox P. M., Borthakur D. 2001; Selection of several classes of mimosine-degradation-defective Tn3Ho gus -insertion mutants of Rhizobium sp. strain TAL1145 on the basis of mimosine-inducible Gus activity. Can J Microbiol47:488–494
    [Google Scholar]
  9. George M. L. C, Young J. W. P., Borthakur D. 1994; Genetic characterization of Rhizobium sp. strain TAL1145 that nodulates tree legumes. Can J Microbiol40:208–215
    [Google Scholar]
  10. Gonzalez-Pasayo R., Martinez-Romero E. 2000; Multiresistance genes of Rhizobium etli CFN42. Mol Plant–Microbe Interact13:572–577
    [Google Scholar]
  11. Huerta-Zepeda A, Durán S, Du Pont G., Calderón J. 1996; Asparagine degradation in Rhizobium etli. Microbiology 142:1071–1076
    [Google Scholar]
  12. Jefferson R. A, Kavanagh T. A., Bevan M. W. 1987; Gus fusions: β -glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J6:3901–3907
    [Google Scholar]
  13. Jones R. J. 1979; The value of Leucaena leucocephala as a feed for ruminants in the tropics. World Animal Rev31:13–23
    [Google Scholar]
  14. Jones R. J., Megarrity R. J. 1986; Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of leucaena. Aust Vet J63:259–262
    [Google Scholar]
  15. Katoh S, Toyama J, Kodama I, Kamiya K, Akita T., Abe T. 1992; Protective action of iron-chelating agents (catechol, mimosine, diferoxamine, and kojic acid) against ischemia-reperfusion injury of isolated neonatal rabbit hearts. Eur Surg Res24:349–355
    [Google Scholar]
  16. Kretovich V. L, Sidel'nikova L. I, Ivanushkin A. G., Karayakina T. I. 1981; Localization of aspartase, asparaginase, and glutaminase in intact bacteroids of Rhizobium lupini. Prikl Biokhim Mikrobiol20:445–447
    [Google Scholar]
  17. Manoil C., Beckwith J. 1985; Tn phoA : a transposon probe for protein export signals. Proc Natl Acad Sci U S A82:8129–8133
    [Google Scholar]
  18. Martinez-Romero E, Segovia L, Mercante F. M, Franco A. A, Graham P., Pardo M. A. 1991; Rhizobium tropici , a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol41:417–426
    [Google Scholar]
  19. Mathews A., Rai V. P. 1985; Mimosine content of Leucaena leucocephala and sensitivity of Rhizobium to mimosine. J Plant Physiol117:377–382
    [Google Scholar]
  20. Miller R. W, McRae D. G, Al-Jobore A., Berndt W. B. 1988; Respiration supported nitrogenase activity of isolated Rhizobium meliloti bacteroids. J Cell Biochem38:35–49
    [Google Scholar]
  21. Moawad H., Bohlool B. 1984; Competition among Rhizobium spp. for nodulation of Leucaena leucocephala in two tropical soils. Appl Environ Microbiol48:5–9
    [Google Scholar]
  22. Nielsen H, Engelbrecht J, Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng10:1–6
    [Google Scholar]
  23. Oresnik I. J, Pacarynuk L. A, O'Brien S. A. P, Yost C. K., Hynes M. F. 1998; Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii : Evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol Plant–Microbe Interact11:1175–1185
    [Google Scholar]
  24. Parveen N., Borthakur D. 1994; Construction of a single-transposon mutant in Rhizobium sp. strain TAL1145 from a double-insertion mutant. Lett Appl Microbiol19:142–145
    [Google Scholar]
  25. Rastogi V. K., Watson R. J. 1991; Aspartate aminotransferase activity is required for aspartate catabolism and symbiotic nitrogen fixation in Rhizobium meliloti. J Bacteriol173:2879–2887
    [Google Scholar]
  26. Rosenblueth M, Hynes M. F., Martinez-Romero E. 1998; Rhizobium tropici teu genes involved in specific uptake of Phaseolus vulgaris bean-exudate compounds. Mol Gen Genet258:587–598
    [Google Scholar]
  27. Ruvkun G. B., Ausubel F. M. 1981; A general method for site-directed mutagenesis in prokaryotes. Nature289:85–89
    [Google Scholar]
  28. Soedarjo M., Borthakur D. 1998; Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobium strains. Soil Biol Biochem30:1605–1613
    [Google Scholar]
  29. Soedarjo M, Hemscheidt T. K., Borthakur D. 1994; Mimosine, a toxin present in leguminous trees ( Leucaena spp.), induces a mimosine-degrading enzyme activity in some strains of Rhizobium. Appl Environ Microbiol60:4268–4272
    [Google Scholar]
  30. Stachel S. E, An G, Flores C., Nester E. W. 1985; A Tn 3lacZ transposon for the random generation of β-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. EMBO J4:891–898
    [Google Scholar]
  31. Staskawicz B, Dahlbeck D, Keen N. T., Napoli C. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol169:5789–5794
    [Google Scholar]
  32. Trinick M. J. 1980; Relationships amongst the fast-growing Rhizobium of Lablab purpureus , Leucaena leucocephala , Mimosa sp., Acacia farnesiana , and Sesbania grandiflora and their affinities with other Rhizobium groups. J Appl Bacteriol49:39–53
    [Google Scholar]
  33. Vincent J. M. 1970; A Manual for the Practical Study of Root Nodule Bacteria. IBP Handbook No. 15 Oxford: Blackwell Scientific;
    [Google Scholar]
  34. Walker J. E, Saraste M, Runswick M. J., Gay N. J. 1982; Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP requiring enzymes and a common nucleotide binding fold. EMBO J1:945–951
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25954-0
Loading
/content/journal/micro/10.1099/mic.0.25954-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error