1887

Abstract

The plasmid-borne gene encodes a dual-function catalase-peroxidase (KatG) (EC 1.11.1.7) that is inducible and heat-labile. In contrast to other rhizobia, was shown to be solely responsible for catalase and peroxidase activity in . An mutant that did not express catalase activity exhibited increased sensitivity to hydrogen peroxide (HO). Pre-exposure to a sublethal concentration of HO allowed to adapt and survive subsequent exposure to higher concentrations of HO. Based on a multiple sequence alignment with other catalase-peroxidases, it was found that the catalytic domains of the KatG protein had three large insertions, two of which were typical of KatG proteins. Like the gene of , the gene was induced by HO and was important in sustaining the exponential growth rate. In , KatG catalase-peroxidase activity is induced eightfold in minimal medium during stationary phase. It was shown that KatG catalase-peroxidase is not essential for nodulation and nitrogen fixation in symbiosis with , although bacteroid proteome analysis indicated an alternative compensatory mechanism for the oxidative protection of in symbiosis. Next to, and divergently transcribed from the catalase promoter, an ORF encoding the regulator OxyR was found; this is the first plasmid-encoded gene described so far. Additionally, the promoter region contained sequence motifs characteristic of OxyR binding sites, suggesting a possible regulatory mechanism for expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25909-0
2003-05-01
2020-02-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491165.html?itemId=/content/journal/micro/10.1099/mic.0.25909-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Baldani J. I., Weaver R. W., Hynes M. F., Eardly B. D.. 1992; Utilization of carbon substrates, electrophoretic enzymes patterns, and symbiotic performance of plasmid-cured clover rhizobia. Appl Environ Microbiol58:2308–2324
    [Google Scholar]
  3. Baron C., Zambryski P. C.. 1995; The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme?. Annu Rev Genet29:107–129
    [Google Scholar]
  4. Barr S. D., Gedamu L.. 2001; Cloning and characterization of three differentially expressed peroxidoxin genes from Leishmania chagasi . Evidence for an enzymatic detoxification of hydroxyl radicals. J Biol Chem276:34279–34287
    [Google Scholar]
  5. Bauer C. E., Elsen S., Bird T. H.. 1999; Mechanisms for redox control of gene expression. Annu Rev Microbiol53:495–523
    [Google Scholar]
  6. Beard S. J., Hashim R., Membrillo-Hernández J., Hughes M. N., Poole R. K.. 1997; Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene ( o732 ) encodes a cation transport ATPase. Mol Microbiol25:883–891
    [Google Scholar]
  7. Bien M., Steffen H., Schulte-Frohlinde D.. 1988; Repair of plasmid pBR322 damaged by γ -irradiation or by restriction endonucleases using different recombination-proficient E. coli strains. Mutat Res194:193–205
    [Google Scholar]
  8. Brunder W., Schmidt H., Karch H.. 1996; KatP, a novel catalase-peroxidase encoded by the large plasmid of enterohaemorrhagic Escherichia coli O157 : H7. Microbiology142:3305–3315
    [Google Scholar]
  9. Calcutt M. J., Lewis M. S., Eisenstark A.. 1998; The oxyR gene from Erwinia carotovora : cloning, sequence analysis and expression in Escherichia coli . FEMS Microbiol Lett167:295–301
    [Google Scholar]
  10. Cevallos M. A., Encarnación S., Leija A., Mora Y., Mora J.. 1996; Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly β -hydroxybutyrate. J Bacteriol178:1646–1654
    [Google Scholar]
  11. Crockford A. J., Davis G. A., Williams H. D.. 1995; Evidence for cell-density-dependent regulation of catalase activity in Rhizobium leguminosarum bv. phaseoli . Microbiology141:843–851
    [Google Scholar]
  12. Ditta G., Stanfield S., Corbin D., Helinski D. R.. 1980; Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti . Proc Natl Acad Sci U S A77:7347–7351
    [Google Scholar]
  13. Dunn M. F., Encarnación S., Araíza G., Vargas M. C., Dávalos A., Peralta H., Mora Y., Mora J.. 1996; Pyruvate carboxylase from Rhizobium etli : mutant characterization, nucleotide sequence, and physiological role. J Bacteriol178:5960–5970
    [Google Scholar]
  14. Echave P., Esparza-Ceron M. A., Cabiscol E., Tamarit J., Ros J., Membrillo-Hernández J., Lin E. C.. 2002; DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli . Proc Natl Acad Sci U S A99:4626–4631
    [Google Scholar]
  15. Eckhardt T.. 1978; A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid1:584–588
    [Google Scholar]
  16. Encarnación S., Dunn M., Willms K., Mora J.. 1995; Fermentative and aerobic metabolism in Rhizobium etli . J Bacteriol177:3058–3066
    [Google Scholar]
  17. Encarnación S., del Carmen Vargas M., Dunn M. F., Dávalos A., Mendoza G., Mora Y., Mora J.. 2002; AniA regulates reserve polymer accumulation and global protein expression in Rhizobium etli . J Bacteriol184:2287–2295
    [Google Scholar]
  18. Farr S. B., Kogoma T.. 1991; Oxidative stress responses in Escherichia coli and Salmonella typhimurium . Microbiol Rev55:561–585
    [Google Scholar]
  19. Flores M., González V., Brom S., Martínez E., Piñero D., Romero D., Dávila G., Palacios R.. 1987; Reiterated DNA sequences in Rhizobium and Agrobacterium spp. J Bacteriol169:5782–5788
    [Google Scholar]
  20. Friedman A. M., Long S. R., Brown S. E., Buikema W. J., Ausubel F. M.. 1982; Construction of a broad host range cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene18:289–296
    [Google Scholar]
  21. Galibert F., Finan T. M., Long S. R.. 53 other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti . Science293:668–672
    [Google Scholar]
  22. García-de los Santos A., Brom S., Romero D.. 1996; Rhizobium plasmids in bacteria–legume interactions. World J Microbiol Biotechnol12:19–125
    [Google Scholar]
  23. Geissdorfer W., Kok R. G., Ratajczak A., Hellingwerf K. J., Hillen W.. 1999; The genes rubA and rubB for alkane degradation in Acinetobacter sp. strain ADP1 are in an operon with estB , encoding an esterase, and oxyR . J Bacteriol181:4292–4298
    [Google Scholar]
  24. Girard L., Brom S., Dávalos A., López O., Soberón M., Romero D.. 2000; Differential regulation of fixN -reiterated genes in Rhizobium etli by a novel fixL–fixK cascade. Mol Plant–Microbe Interact13:1283–1292
    [Google Scholar]
  25. González-Flecha B., Demple B.. 1997; Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli . J Bacteriol179:382–388
    [Google Scholar]
  26. Gregory E. M., Fridovich I.. 1974; Visualization of catalase on acrylamide gels. Anal Biochem58:57–62
    [Google Scholar]
  27. Halliwell B., Gutteridge J. M. C.. 1986; Oxygen free radicals and iron in relation to biology and medicine. Some problems and concepts. Arch Biochem Biophys246:501–514
    [Google Scholar]
  28. Herouart D., Sigaud S., Moreau S., Frendo P., Touati D., Puppo A.. 1996; Cloning and characterization of the katA gene of Rhizobium meliloti encoding a hydrogen peroxide-inducible catalase. J Bacteriol178:6802–6809
    [Google Scholar]
  29. Hochman A., Figueredo A., Wall J. D.. 1992; Physiological functions of hydroperoxidases in Rhodobacter capsulatus . J Bacteriol174:3386–3391
    [Google Scholar]
  30. Huerta-Zepeda A., Ortuño L., Du Pont G., Duran S., Lloret A., Merchant-Larios H., Calderón J.. 1997; Isolation and characterization of Rhizobium etli mutants altered in degradation of asparagine. J Bacteriol179:2068–2072
    [Google Scholar]
  31. Kaneko T., Nakamura Y., Sato S.. 21 other authors 2000; Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti . DNA Res7:331–338
    [Google Scholar]
  32. Keen N. T., Tamaki S., Kobayashi D., Trollinger D.. 1988; Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene70:191–197
    [Google Scholar]
  33. Kim J. A., Mayfield J.. 2000; Identification of Brucella abortus OxyR and its role in control of catalase expression. J Bacteriol182:5631–5633
    [Google Scholar]
  34. Klotz M. G., Hutcheson S. W.. 1992; Multiple periplasmic catalases in phytopathogenic strains of Pseudomonas syringae . Appl Environ Microbiol58:2468–2473
    [Google Scholar]
  35. Loewen P. C., Hengge-Aronis R.. 1994; The role of the sigma factor σ S (KatF) in bacterial global regulation. Annu Rev Microbiol48:53–80
    [Google Scholar]
  36. Loewen P. C., Switala J.. 1987; Multiple catalases in Bacillus subtilis. J Bacteriol169:3601–3607
    [Google Scholar]
  37. Loewen P. C., Switala J., Triggs-Raine B. L.. 1985; Catalase HPI and HPII in Escherichia coli are induced independently. Arch Biochem Biophys243:144–149
    [Google Scholar]
  38. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. 1951; Protein measurement with the Folin phenol reagent. J Biol Chem193:265–275
    [Google Scholar]
  39. Mongkolsuk S., Sukchawalit R., Loprasert S., Praituan W., Upaichit A.. 1998; Construction and physiological analysis of a Xanthomonas mutant to examine the role of the oxyR gene in oxidant-induced protection against peroxide killing. J Bacteriol180:3988–3991
    [Google Scholar]
  40. Noel K. D., Sánchez A., Fernández L., Leemans J., Cevallos M. A.. 1984; Rhizobium phaseoli symbiotic mutants with transposon Tn 5 insertions. J Bacteriol158:148–155
    [Google Scholar]
  41. Peters M., Heinaru A., Nurk A.. 2001; Plasmid-encoded catalase KatA, the main catalase of Pseudomonas fluorescens strain Cb36. FEMS Microbiol Lett200:235–240
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Schellhorn H. E., Hassan H. M.. 1988; Transcriptional regulation of katE in E. coli K-12. J Bacteriol170:4286–4292
    [Google Scholar]
  44. Sherman D. R., Sabo P. J., Hickey M. J., Arain T. M., Mahairas G. G., Yuan Y., Barry C. E. III, Stover C. K.. 1995; Disparate responses to oxidative stress in saprophytic and pathogenic mycobacteria. Proc Natl Acad Sci U S A92:6625–6629
    [Google Scholar]
  45. Sigaud S., Becquet V., Frendo P., Puppo A., Herouart D.. 1999; Differential regulation of two divergent Sinorhizobium meliloti genes for HPII-like catalases during free-living growth and protective role of both catalases during symbiosis. J Bacteriol181:2634–2639
    [Google Scholar]
  46. Simon R.. 1984; High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn 5 -Mob transposon. Mol Gen Genet196:413–420
    [Google Scholar]
  47. Steinman H. M., Fareed F., Weinstein L.. 1997; Catalase-peroxidase of Caulobacter crescentus : function and role in stationary-phase survival. J Bacteriol179:6831–6836
    [Google Scholar]
  48. Storz G., Imlay J. A.. 1999; Oxidative stress. Curr Opin Microbiol2:188–194
    [Google Scholar]
  49. Triggs-Raine B. L., Doble B. W., Mulvey M. R., Sorby P. A., Loewen P. C.. 1988; Nucleotide sequence of katG , encoding catalase HPI of Escherichia coli . J Bacteriol170:4415–4419
    [Google Scholar]
  50. von Ossowski I., Mulvey M. R., Leco P. A., Borys A., Loewen P. C.. 1991; Nucleotide sequence of Escherichia coli katE , which encodes catalase HPII. J Bacteriol173:514–520
    [Google Scholar]
  51. Weinstein M., Roberts R. C., Helinski D. R.. 1992; A region of the broad-host-range plasmid RK2 causes stable in planta inheritance of plasmids in Rhizobium meliloti cells isolated from alfalfa root nodules. J Bacteriol174:7486–7489
    [Google Scholar]
  52. Welinder K. G.. 1991; Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily. Biochim Biophys Acta1080:215–220
    [Google Scholar]
  53. Xu X. Q., Pan S. Q.. 2000; An Agrobacterium catalase is a virulence factor involved in tumorigenesis. Mol Microbiol35:407–414
    [Google Scholar]
  54. Zhang Y., Heym B., Allen B., Young D., Cole S.. 1992; The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis . Nature358:591–593
    [Google Scholar]
  55. Zheng M., Aslund F., Storz G.. 1998; Activation of the OxyR transcription factor by reversible disulfide bond formation. Science279:1718–1721
    [Google Scholar]
  56. Zheng M., Wang X., Doan B., Lewis L. A., Schneider T. D., Storz G.. 2001; Computation-directed identification of OxyR DNA binding sites in Escherichia coli . J Bacteriol183:4571–4579
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25909-0
Loading
/content/journal/micro/10.1099/mic.0.25909-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error