1887

Abstract

Phase variation is a mechanism of ON–OFF switching that is widely utilized by bacterial pathogens. There is currently no standardization to how the rate of phase variation is determined experimentally, and traditional methods of mutation rate estimation may not be appropriate to this process. Here, the history of mutation rate estimation is reviewed, describing the existing methods available. A new mathematical model that can be applied to this problem is also presented. This model specifically includes the confounding factors of back-mutation and the influence of fitness differences between the alternate phenotypes. These are central features of phase variation but are rarely addressed, with the result that some previously estimated phase variation rates may have been significantly overestimated. It is shown that, conversely, the model can also be used to investigate fitness differences if mutation rates are approximately known. In addition, stochastic simulations of the model are used to explore the impact of ‘jackpot cultures' on the mutation rate estimation. Using the model, the impact of realistic rates and selection on population structure is investigated. In the absence of fitness differences it is predicted that there will be phenotypic stability over many generations. The rate of phenotypic change within a population is likely, therefore, to be principally determined by selection. A greater insight into the population dynamics of mutation rate processes can be gained if populations are monitored over successive time points.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25807-0
2003-02-01
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/2/mic149485.html?itemId=/content/journal/micro/10.1099/mic.0.25807-0&mimeType=html&fmt=ahah

References

  1. Armitage P. J. 1952; The statistical theory of bacterial populations subject to mutation. J R Stat SocB14:1–40
    [Google Scholar]
  2. Asteris G., Sarkar S. 1996; Bayesian procedures for the estimation of mutation rates from fluctuation experiments. Genetics142:313–326
    [Google Scholar]
  3. Belland R. J, Morrison S. G, Carlson J. H., Hogan D. M. 1997; Promoter strength influences phase variation of neisserial opa genes. Mol Microbiol23:123–135
    [Google Scholar]
  4. Blake M. S, Blake C. M, Apicella M. A., Mandrell R. E. 1995; Gonococcal opacity: lectin-like interactions between Opa proteins and lipopolysaccharide. Infect Immun63:1434–1439
    [Google Scholar]
  5. Bucci C, Lavitola A, Salvatore P, Del Giudice L, Masardo D. R, Bruni C. B., Alifano P. 1999; Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell3:435–445
    [Google Scholar]
  6. Bunting M. I. 1940; The production of stable populations of color variants of Serratia marcescens no. 274 in rapidly growing cultures. J Bacteriol40:69–81
    [Google Scholar]
  7. Cairns J, Overbaugh J., Miller S. 1988; The origin of mutants. Nature335:142–145
    [Google Scholar]
  8. Demerec M. 1945; Production of staphylococcus strains resistant to various concentrations of penicillin. Proc Natl Acad Sci Wash31:16–24
    [Google Scholar]
  9. Drake J. W. 1991; A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A88:7160–7164
    [Google Scholar]
  10. Eisenstein B. I. 1981; Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science214:337–339
    [Google Scholar]
  11. Hammerschmidt S, Hilse R, van Putten J. P. M, Gerardy-Schahn R, Unkmeir A., Frosch M. 1996; Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element. EMBO J15:192–198
    [Google Scholar]
  12. Hood D. W, Deadman M. E, Jennings M. P, Biscercic M, Fleischmann R. D, Venter J. C., Moxon E. R. 1996; DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc Natl Acad Sci U S A93:11121–11125
    [Google Scholar]
  13. Inzana T. J, Gogolewski R. P., Corbeil L. B. 1992; Phenotypic phase variation in Haemophilus somnus lipooligosaccharide during bovine pneumonia and after in vitro passage. Infect Immun60:2943–2951
    [Google Scholar]
  14. Jones M. E, Thomas S. M., Rogers A. 1994; Luria–Delbruck fluctuation experiments: design and analysis. Genetics136:1209–1216
    [Google Scholar]
  15. Kendal W. S., Frost P. 1988; Pitfalls and practice of Luria–Delbrück fluctuation analysis: a review. Cancer Res48:1060–1065
    [Google Scholar]
  16. Koch A. L. 1982; Multistep kinetics: choice of models for the growth of bacteria. J Theor Biol98:401–417
    [Google Scholar]
  17. Lea D. E., Coulson C. A. 1949; The distribution of the numbers of mutants in bacterial populations. J Genet49:264–285
    [Google Scholar]
  18. Li I.-C., Chu E. H. Y. 1987; Evaluation of methods for the estimation of mutation rates in cultured mammalian cell populations. Mutat Res190:281–287
    [Google Scholar]
  19. Luria S. E., Delbrük M. 1943; Mutations of bacteria from virus sensitivity to virus resistance. Genetics28:491–511
    [Google Scholar]
  20. Mittler J. E., Lenski R. E. 1992; Experimental evidence for an alternative to directed mutation in the bgl operon. Nature356:446–448
    [Google Scholar]
  21. Parkhill J, Wren B. W, Mungall K.. 18 other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403:665–668
    [Google Scholar]
  22. Roche R. J, High N. J., Moxon E. R. 1994; Phase variation of Haemophilus influenzae lipopolysaccharide: characterization of lipopolysaccharide from individual colonies. FEMS Microbiol Lett120:279–284
    [Google Scholar]
  23. Salaün L, Snyder L. A. S., Saunders N. J. 2003; Adaptation by phase variation in pathogenic bacteria. Adv Appl Microbiol in press
    [Google Scholar]
  24. Sarker S, Ma M. T., Sandri H. 1992; On fluctuation analysis: a new, simple and efficient method for computing the expected number of mutants. Genetica85:173–179
    [Google Scholar]
  25. Saunders N. J. 1999; Bacterial Phase Variation Associated with Repetitive DNA PhD thesis The Open University; UK. Sponsoring institute: The Institute of Molecular Medicine, University of Oxford;
    [Google Scholar]
  26. Saunders N. J. 2003; Phase variation in immune evasion. In Bacterial Evasion of Host Immune Responses. Edited by Henderson B., Oyston P.. Cambridge University Press; in press
    [Google Scholar]
  27. Saunders N. J, Peden J. F, Hood D. W., Moxon E. R. 1998; Simple sequence repeats in the Helicobacter pylori genome. Mol Microbiol27:1091–1098
    [Google Scholar]
  28. Saunders N. J, Jeffries A. C, Peden J. F, Hood D. W, Tettelin H, Rappouli R., Moxon E. R. 2000; Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol Microbiol37:207–215
    [Google Scholar]
  29. Snyder L. A. S, Butcher S. A., Saunders N. J. 2001; Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology147:2321–2332
    [Google Scholar]
  30. Stewart F. M. 1994; Fluctuation tests: how reliable are the estimates of mutation rates?. Genetics137:1139–1146
    [Google Scholar]
  31. Stewart F. M, Gordon D. M., Levin B. R. 1990; Fluctuation analysis: the probability distribution of the number of mutants under different conditions. Genetics124:175–185
    [Google Scholar]
  32. Stocker B. A. D. 1949; Measurements of rate of mutation of flagellar antigenic phase in Salmonella typhimurium. J Hyg47:398–413
    [Google Scholar]
  33. Weiser J. N. 1993; Relationship between colony morphology and the life cycle of Haemophilus influenzae: the contribution of lipopolysaccharide phase variation to pathogenesis. J Infect Dis168:672–680
    [Google Scholar]
  34. Weiser J. N, Pan N, McGowan K. L, Mucher D, Martin A., Richards J. 1998; Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J Exp Med187:631–640
    [Google Scholar]
  35. Witkin E. M. 1946; Inherited differences in sensitivity to radiation in Escherichia coli. Proc Natl Acad Sci Wash32:59–68
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25807-0
Loading
/content/journal/micro/10.1099/mic.0.25807-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error