1887

Abstract

Phase variation is a mechanism of ON–OFF switching that is widely utilized by bacterial pathogens. There is currently no standardization to how the rate of phase variation is determined experimentally, and traditional methods of mutation rate estimation may not be appropriate to this process. Here, the history of mutation rate estimation is reviewed, describing the existing methods available. A new mathematical model that can be applied to this problem is also presented. This model specifically includes the confounding factors of back-mutation and the influence of fitness differences between the alternate phenotypes. These are central features of phase variation but are rarely addressed, with the result that some previously estimated phase variation rates may have been significantly overestimated. It is shown that, conversely, the model can also be used to investigate fitness differences if mutation rates are approximately known. In addition, stochastic simulations of the model are used to explore the impact of ‘jackpot cultures' on the mutation rate estimation. Using the model, the impact of realistic rates and selection on population structure is investigated. In the absence of fitness differences it is predicted that there will be phenotypic stability over many generations. The rate of phenotypic change within a population is likely, therefore, to be principally determined by selection. A greater insight into the population dynamics of mutation rate processes can be gained if populations are monitored over successive time points.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25807-0
2003-02-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/2/mic149485.html?itemId=/content/journal/micro/10.1099/mic.0.25807-0&mimeType=html&fmt=ahah

References

  1. Armitage, P. J. ( 1952; ). The statistical theory of bacterial populations subject to mutation. J R Stat Soc B14, 1–40.
    [Google Scholar]
  2. Asteris, G. & Sarkar, S. ( 1996; ). Bayesian procedures for the estimation of mutation rates from fluctuation experiments. Genetics 142, 313–326.
    [Google Scholar]
  3. Belland, R. J., Morrison, S. G., Carlson, J. H. & Hogan, D. M. ( 1997; ). Promoter strength influences phase variation of neisserial opa genes. Mol Microbiol 23, 123–135.[CrossRef]
    [Google Scholar]
  4. Blake, M. S., Blake, C. M., Apicella, M. A. & Mandrell, R. E. ( 1995; ). Gonococcal opacity: lectin-like interactions between Opa proteins and lipopolysaccharide. Infect Immun 63, 1434–1439.
    [Google Scholar]
  5. Bucci, C., Lavitola, A., Salvatore, P., Del Giudice, L., Masardo, D. R., Bruni, C. B. & Alifano, P. ( 1999; ). Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell 3, 435–445.[CrossRef]
    [Google Scholar]
  6. Bunting, M. I. ( 1940; ). The production of stable populations of color variants of Serratia marcescens no. 274 in rapidly growing cultures. J Bacteriol 40, 69–81.
    [Google Scholar]
  7. Cairns, J., Overbaugh, J. & Miller, S. ( 1988; ). The origin of mutants. Nature 335, 142–145.[CrossRef]
    [Google Scholar]
  8. Demerec, M. ( 1945; ). Production of staphylococcus strains resistant to various concentrations of penicillin. Proc Natl Acad Sci Wash 31, 16–24.[CrossRef]
    [Google Scholar]
  9. Drake, J. W. ( 1991; ). A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88, 7160–7164.[CrossRef]
    [Google Scholar]
  10. Eisenstein, B. I. ( 1981; ). Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science 214, 337–339.[CrossRef]
    [Google Scholar]
  11. Hammerschmidt, S., Hilse, R., van Putten, J. P. M., Gerardy-Schahn, R., Unkmeir, A. & Frosch, M. ( 1996; ). Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element. EMBO J 15, 192–198.
    [Google Scholar]
  12. Hood, D. W., Deadman, M. E., Jennings, M. P., Biscercic, M., Fleischmann, R. D., Venter, J. C. & Moxon, E. R. ( 1996; ). DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc Natl Acad Sci U S A 93, 11121–11125.[CrossRef]
    [Google Scholar]
  13. Inzana, T. J., Gogolewski, R. P. & Corbeil, L. B. ( 1992; ). Phenotypic phase variation in Haemophilus somnus lipooligosaccharide during bovine pneumonia and after in vitro passage. Infect Immun 60, 2943–2951.
    [Google Scholar]
  14. Jones, M. E., Thomas, S. M. & Rogers, A. ( 1994; ). Luria–Delbruck fluctuation experiments: design and analysis. Genetics 136, 1209–1216.
    [Google Scholar]
  15. Kendal, W. S. & Frost, P. ( 1988; ). Pitfalls and practice of Luria–Delbrück fluctuation analysis: a review. Cancer Res 48, 1060–1065.
    [Google Scholar]
  16. Koch, A. L. ( 1982; ). Multistep kinetics: choice of models for the growth of bacteria. J Theor Biol 98, 401–417.[CrossRef]
    [Google Scholar]
  17. Lea, D. E. & Coulson, C. A. ( 1949; ). The distribution of the numbers of mutants in bacterial populations. J Genet 49, 264–285.[CrossRef]
    [Google Scholar]
  18. Li, I.-C. & Chu, E. H. Y. ( 1987; ). Evaluation of methods for the estimation of mutation rates in cultured mammalian cell populations. Mutat Res 190, 281–287.[CrossRef]
    [Google Scholar]
  19. Luria, S. E. & Delbrük, M. ( 1943; ). Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511.
    [Google Scholar]
  20. Mittler, J. E. & Lenski, R. E. ( 1992; ). Experimental evidence for an alternative to directed mutation in the bgl operon. Nature 356, 446–448.[CrossRef]
    [Google Scholar]
  21. Parkhill, J., Wren, B. W., Mungall, K. & 18 other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.[CrossRef]
    [Google Scholar]
  22. Roche, R. J., High, N. J. & Moxon, E. R. ( 1994; ). Phase variation of Haemophilus influenzae lipopolysaccharide: characterization of lipopolysaccharide from individual colonies. FEMS Microbiol Lett 120, 279–284.[CrossRef]
    [Google Scholar]
  23. Salaün, L., Snyder, L. A. S. & Saunders, N. J. ( 2003; ). Adaptation by phase variation in pathogenic bacteria. Adv Appl Microbiol (in press).
    [Google Scholar]
  24. Sarker, S., Ma, M. T. & Sandri, H. ( 1992; ). On fluctuation analysis: a new, simple and efficient method for computing the expected number of mutants. Genetica 85, 173–179.[CrossRef]
    [Google Scholar]
  25. Saunders, N. J. ( 1999; ). Bacterial Phase Variation Associated with Repetitive DNA. PhD thesis, The Open University, UK. Sponsoring institute: The Institute of Molecular Medicine, University of Oxford.
  26. Saunders, N. J. ( 2003; ). Phase variation in immune evasion. In Bacterial Evasion of Host Immune Responses. Edited by B. Henderson & P. Oyston. Cambridge University Press (in press).
  27. Saunders, N. J., Peden, J. F., Hood, D. W. & Moxon, E. R. ( 1998; ). Simple sequence repeats in the Helicobacter pylori genome. Mol Microbiol 27, 1091–1098.[CrossRef]
    [Google Scholar]
  28. Saunders, N. J., Jeffries, A. C., Peden, J. F., Hood, D. W., Tettelin, H., Rappouli, R. & Moxon, E. R. ( 2000; ). Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol Microbiol 37, 207–215.[CrossRef]
    [Google Scholar]
  29. Snyder, L. A. S., Butcher, S. A. & Saunders, N. J. ( 2001; ). Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology 147, 2321–2332.
    [Google Scholar]
  30. Stewart, F. M. ( 1994; ). Fluctuation tests: how reliable are the estimates of mutation rates? Genetics 137, 1139–1146.
    [Google Scholar]
  31. Stewart, F. M., Gordon, D. M. & Levin, B. R. ( 1990; ). Fluctuation analysis: the probability distribution of the number of mutants under different conditions. Genetics 124, 175–185.
    [Google Scholar]
  32. Stocker, B. A. D. ( 1949; ). Measurements of rate of mutation of flagellar antigenic phase in Salmonella typhimurium. J Hyg 47, 398–413.[CrossRef]
    [Google Scholar]
  33. Weiser, J. N. ( 1993; ). Relationship between colony morphology and the life cycle of Haemophilus influenzae: the contribution of lipopolysaccharide phase variation to pathogenesis. J Infect Dis 168, 672–680.[CrossRef]
    [Google Scholar]
  34. Weiser, J. N., Pan, N., McGowan, K. L., Mucher, D., Martin, A. & Richards, J. ( 1998; ). Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J Exp Med 187, 631–640.[CrossRef]
    [Google Scholar]
  35. Witkin, E. M. ( 1946; ). Inherited differences in sensitivity to radiation in Escherichia coli. Proc Natl Acad Sci Wash 32, 59–68.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25807-0
Loading
/content/journal/micro/10.1099/mic.0.25807-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error