1887

Abstract

In this manuscript, the authors have sought to gain a better understanding of the interactions between and lactic acid bacteria (LAB) isolated from Rogossa MRS agar along the digestive tract of grain- and forage-fed cattle. from cattle receiving a high-grain diet were more numerous (<0·05) than from the high-forage diet and the highest numbers were in the faeces. Isolates on Rogossa MRS agar were always greater in the high-grain diet (<0·05) and contained a significant number of LAB. A random set of Rogossa MRS agar colonies was selected and artificial neural networks were used to develop a relationship between colony description and species which was validated using sequence analysis (16S rDNA). The neural networks correctly predicted species in more than 80 % of cases and was composed, primarily, of , , , , and . In conjunction with statistical diversity indices, it was demonstrated that diversity in the high-fibre diet was always lower and was a consequence of the dominance of . In contrast, the diversity in the high-grain diet was greater (<0·05) and was a consequence of the decline in . These data demonstrate that there is a positive relationship between coliform and LAB isolates throughout the digestive tract of cattle, and diet is the major factor regulating bacterial composition.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25685-0
2003-01-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/1/mic149_7.html?itemId=/content/journal/micro/10.1099/mic.0.25685-0&mimeType=html&fmt=ahah

References

  1. Anonymous ( 2001; ). Draft risk assessment of the public health impact of Escherichia coli O157 : H7 in ground beef. http://www.fsis.usda.gov/OPPDE/rdad/FRPubs/00-023NReport.pdf
  2. Blackburn, N., Hagström, Å., Wikner, J., Cuadros-Hansson, R. & Bjørnsen, P. K. ( 1998; ). Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl Environ Microbiol 64, 3246–3255.
    [Google Scholar]
  3. Boehm, M. J., Madden, L. V. & Hoitink, H. A. J. ( 1993; ). Effect of organic matter decomposition level on bacterial species diversity and composition in relationship to pythium damping-off severity. Appl Environ Microbiol 59, 4171–4179.
    [Google Scholar]
  4. Bollet, C. & de Micco, P. ( 1992; ). Taxonomic methods. In Encyclopaedia of Microbiology, pp. 179–200. Edited by J. Lederberg. New York: Academic Press.
  5. Brown, M. S., Krehbiel, C. R., Galyean, M. L., Remmenga, M. D., Peters, J. P., Hibbard, B., Robinson, J. & Moseley, W. M. ( 2000; ). Evaluation of models of acute and subacute acidosis on dry matter intake, ruminal fermentation, blood chemistry, and endocrine profiles of beef steers. J Anim Sci 78, 3155–3168.
    [Google Scholar]
  6. Bryant, M. P. ( 1972; ). Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25, 1324–1328.
    [Google Scholar]
  7. Callaway, T. R., Anderson, R. C., Anderson, T. J., Poole, T. L., Bischoff, K. M., Kubena, L. F. & Nisbet, D. J. ( 2001; ). Escherichia coli O157 : H7 becomes resistant to sodium chlorate in pure culture, but not in mixed culture or in vivo. J Appl Microbiol 91, 427–434.[CrossRef]
    [Google Scholar]
  8. Callaway, T. R., Anderson, R. C., Genovese, K. J., Poole, T. L., Anderson, T. J., Byrd, J. A., Kubena, L. F. & Nisbet, D. J. ( 2002; ). Sodium chlorate supplementation reduces E. coli O157 : H7 populations in cattle. J Anim Sci 80, 1683–1689.
    [Google Scholar]
  9. Cray, W. C., Casey, T. A., Bosworth, B. T. & Rasmussen, M. A. ( 1998; ). Effect of dietary stress on fecal shedding of Escherichia coli O157 : H7 in calves. Appl Environ Microbiol 64, 1975–1979.
    [Google Scholar]
  10. Dehority, B. A. & Orpin, C. G. ( 1988; ). Development of, and natural fluctuations in, rumen microbial populations. In The Rumen and its Microbes, pp. 151–183. Edited by P. N. Hobson. New York: Elsevier.
  11. Diez-Gonzalez, F., Calloway, T. R., Kizoulis, M. G. & Russell, J. B. ( 1998; ). Grain feeding and dissemination of acid-resistant Escherichia coli from cattle. Science 281, 1666–1668.[CrossRef]
    [Google Scholar]
  12. Elder, R. O., Keen, J. E., Siragusa, G. R., Barkocy-Gallagher, G., Koohmaraie, M. & Laegreid, W. W. ( 2000; ). Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. Proc Natl Acad Sci U S A 97, 2999–3003.[CrossRef]
    [Google Scholar]
  13. Fegan, N. & Desmarchelier, P. ( 2002; ). Comparison between human and animal isolates of Shiga toxin-producing Escherichia coli O157 from Australia. Epidemiol Infect 128, 357–362.
    [Google Scholar]
  14. Gate, J. J., Parker, D. S. & Lobley, G. E. ( 1999; ). The metabolic fate of the amido-N group of glutamine in the tissues of the gastrointestinal tract in 24 h-fasted sheep. Br J Nutr 81, 297–306.
    [Google Scholar]
  15. Gill, H. S., Shu, Q. & Leng, R. A. ( 2000; ). Immunization with Streptococcus bovis protects against lactic acidosis in sheep. Vaccine 18, 2541–2548.[CrossRef]
    [Google Scholar]
  16. Gopal, P. K., Prasad, J., Smart, J. & Gill, H. S. ( 2001; ). In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol 67, 207–216.[CrossRef]
    [Google Scholar]
  17. Hancock, D. D., Besser, T. E., Gill, C. & Bohach, C. H. ( 1999; ). Cattle, hay and E. coli. Science 284, 51–53.
    [Google Scholar]
  18. Harmon, B. G., Brown, C. A., Tkalcic, S., Mueller, P. O. E., Parks, A., Jain, A. V., Zhao, T. & Doyle, M. P. ( 1999; ). Fecal shedding and rumen growth of Escherichia coli O157 : H7 in fasted calves. J Food Prot 62, 574–579.
    [Google Scholar]
  19. Hovde, C. J., Austin, P. R., Cloud, K. A., Williams, C. J. & Hunt, C. W. ( 1999; ). Effect of cattle diet on Escherichia coli O157 : H7 acid resistance. Appl Environ Microbiol 65, 3233–3235.
    [Google Scholar]
  20. Hungate, R. E. ( 1950; ). The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14, 1–49.
    [Google Scholar]
  21. Jordan, S. L., Glover, J., Malcolm, L., Thomson-Carter, F. M., Booth, I. R. & Park, S. F. ( 1999; ). Augmentation of killing of Escherichia coli O157 by combinations of lactate, ethanol, and low-pH conditions. Appl Environ Microbiol 65, 1308–1311.
    [Google Scholar]
  22. Jordi, B. J., Boutaga, K., van Heeswijk, C. M., van Knapen, F. & Lipman, L. J. ( 2001; ). Sensitivity of Shiga toxin-producing Escherichia coli (STEC) strains for colicins under different experimental conditions. FEMS Microbiol Lett 204, 329–334.[CrossRef]
    [Google Scholar]
  23. Keen, J. E., Urlich, G. A. & Elder, R. O. ( 1999; ). Effects of hay- and grain-based diets on the fecal shedding of naturally-acquired enterohemorrhagic E. coli (EHEC) O157 : H7 in beef feedlot cattle. In Abstracts of the 80th Conference of Research Workers in Animal Diseases, Chicago. Abstract 86. Ames, IA: Iowa State Press.
  24. Kim, J., Nietfeldt, J., Ju, J., Wise, J., Fegan, N., Desmarchelier, P. & Benson, A. K. ( 2001a; ). Ancestral divergence, genome diversification, and phylogeographic variation in subpopulations of sorbitol-negative, β-glucuronidase-negative Escherichia coli O157. J Bacteriol 183, 6885–6897.[CrossRef]
    [Google Scholar]
  25. Kim, S. H., Yang, S. J., Koo, H. C., Bae, W. K., Kim, J. Y., Park, J. H., Baek, Y. J. & Park, Y. H. ( 2001b; ). Inhibitory activity of Bifidobacterium longum HY8001 against Vero cytotoxin of Escherichia coli O157 : H7. J Food Prot 64, 1667–1673.
    [Google Scholar]
  26. Koch, C., Hertwig, S., Lurz, R., Appel, B. & Beutin, L. ( 2001; ). Isolation of a lysogenic bacteriophage carrying the stx(1(OX3)) gene, which is closely associated with Shiga toxin-producing Escherichia coli strains from sheep and humans. J Clin Microbiol 39, 3992–3998.[CrossRef]
    [Google Scholar]
  27. Krause, D. O. & McSweeney, C. S. ( 2002; ). Use of feed supplements to manage generic and pathogenic Escherichia coli in tropical animal production systems. In Proceedings of the International Association for Food Protection, pp 148–149. Des Moines, IA: International Association for Food Protection.
  28. Kudva, I. T., Hunt, C. W., Williams, C. J., Nance, U. M. & Hovde, C. J. ( 1997; ). Evaluation of dietary influences of Escherichia coli O157 : H7 shedding by sheep. Appl Environ Microbiol 63, 3878–3886.
    [Google Scholar]
  29. Kumada, K., Koike, K. & Fujiwara, K. ( 1985; ). The survival of bacteria under starvation conditions: a mathematical expression of microbial death. J Gen Microbiol 131, 2309–2312.
    [Google Scholar]
  30. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–176. Edited by M. Goodfellow. Chichester: Wiley.
  31. Latham, M. J., Sharpe, E. & Sutton, J. D. ( 1971; ). The microbial flora of the rumen of cows fed hay and high cereal rations and its relationship to the rumen fermentation. J Appl Bacteriol 34, 425–434.[CrossRef]
    [Google Scholar]
  32. Latham, M. J., Storry, J. E. & Sharpe, M. E. ( 1972; ). Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Appl Microbiol 24, 871–877.
    [Google Scholar]
  33. LeJeune, J. T., Besser, T. E., Merrill, N. L., Rice, D. H. & Hancock, D. D. ( 2001; ). Livestock drinking water microbiology and the factors influencing the quality of drinking water offered to cattle. J Dairy Sci 84, 1856–1862.[CrossRef]
    [Google Scholar]
  34. Lema, M., Williams, L. & Rao, D. R. ( 2001; ). Reduction of fecal shedding of enterohemorrhagic Escherichia coli O157 : H7 in lamb by feeding microbial feed supplement. Small Rumin Res 39, 31–39.[CrossRef]
    [Google Scholar]
  35. Mackie, R. I. & Gilchrist, F. M. C. ( 1979; ). Changes in lactate-producing and lactate-utilizing bacteria in relation to pH in the rumen of sheep during stepwise adaptation to a high concentration diet. Appl Environ Microbiol 38, 422–430.
    [Google Scholar]
  36. Mackie, R. I. & Heath, S. ( 1979; ). Enumeration and isolation of lactate-utilizing bacteria from the rumen of sheep. Appl Environ Microbiol 38, 416–421.
    [Google Scholar]
  37. Mackie, R. I., Gilchrist, F. M. C., Robberts, A. M., Hannah, P. E. & Schwartz, H. M. ( 1978; ). Microbiological and chemical changes in the rumen during stepwise adaptation of sheep to high concentrate diets. J Agric Sci 90, 241–254.[CrossRef]
    [Google Scholar]
  38. Meng, J. & Doyle, M. P. ( 1997; ). Emerging issues in microbiological food safety. Annu Rev Nutr 17, 255–275.[CrossRef]
    [Google Scholar]
  39. Midgley, J. & Desmarchelier, P. ( 2001; ). Pre-slaughter handling of cattle and Shiga toxin-producing Escherichia coli (STEC). Lett Appl Microbiol 32, 307–311.[CrossRef]
    [Google Scholar]
  40. Midgley, J., Fegan, N. & Desmarchelier, P. ( 1999; ). Dynamics of Shiga toxin-producing Escherichia coli (STEC) in feedlot cattle. Lett Appl Microbiol 29, 85–89.[CrossRef]
    [Google Scholar]
  41. Naidu, A. S., Xie, X., Leumer, D. A., Harrison, S., Burrill, M. J. & Fonda, E. A. ( 2002; ). Reduction of sulfide, ammonia compounds, and adhesion properties of Lactobacillus casei strain KE99 in vitro. Curr Microbiol 44, 196–205.[CrossRef]
    [Google Scholar]
  42. Noble, P. A., Bidle, K. D. & Fletcher, M. ( 1997; ). Natural microbial community composition compared by a back-propagation neural network and cluster analysis of 5S rRNA. Appl Environ Microbiol 63, 1762–1770.
    [Google Scholar]
  43. Noble, P. A., Almeida, J. S. & Lovell, C. R. ( 2000; ). Application of neural computing methods for interpreting phospholipid fatty acid profiles of natural microbial communities. Appl Environ Microbiol 66, 694–699.[CrossRef]
    [Google Scholar]
  44. O'Brien, S. J., Murdoch, P. S., Riley, A. H. & 7 other authors ( 2001; ). A foodborne outbreak of Vero cytotoxin-producing Escherichia coli O157 : H-phage type 8 in hospital. J Hosp Infect 49, 167–172.[CrossRef]
    [Google Scholar]
  45. Ogawa, M., Shimizu, K., Nomoto, K., Tanaka, R., Hamabata, T., Yamasaki, S., Takeda, T. & Takeda, Y. ( 2001; ). Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157 : H7 by probiotic Lactobacillus strains due to production of lactic acid. Int J Food Microbiol 68, 135–140.[CrossRef]
    [Google Scholar]
  46. Ohya, T., Marubashi, T. & Ito, H. ( 2000; ). Significance of fecal volatile fatty acids in shedding of Escherichia coli O157 from calves: experimental infection and preliminary use of a probiotic product. J Vet Med Sci 62, 1151–1155.[CrossRef]
    [Google Scholar]
  47. Rao, V. B. & Rao, H. V. ( 1993; ). C++ Neural Networks and Fuzzy Logic. New York: MIS Press.
  48. Riley, M. A. & Gordon, D. M. ( 1999; ). The ecological role of bacteriocins in bacterial competition. Trends Microbiol 7, 129–133.[CrossRef]
    [Google Scholar]
  49. Russell, J. B. & Hino, T. ( 1985; ). Regulation of lactate production in Streptococcus bovis: a spiraling effect that leads to rumen acidosis. J Dairy Sci 68, 1712–1721.[CrossRef]
    [Google Scholar]
  50. Scott, T., Wilson, C., Bailey, D., Klopfenstein, T., Milton, T., Moxley, R., Smith, D., Gray, J. & Hungerford, L. ( 2000; ). Influence of diet on total and acid resistant E. coli and colonic pH. In 2000 Nebraska Beef Report pp. 39–41. Lincoln, NE: University of Nebraska-Lincoln.
  51. Slyter, L. L. ( 1976; ). Influence of acidosis on rumen function. J Anim Sci 43, 910–929.
    [Google Scholar]
  52. Zhao, T., Doyle, M. P., Harmon, B. G., Brown, C. A., Mueller, P. O. E. & Parks, A. H. ( 1998; ). Reduction of carriage of enterohemorrhagic Escherichia coli O157 : H7 in cattle by inoculation with probiotic bacteria. J Clin Microbiol 36, 641–647.
    [Google Scholar]
  53. Zust, J., Pestevsek, U. & Vengust, A. ( 2000; ). Impact of lactic acid fermentation in the large intestine on acute lactic acidosis in cattle. Dtsch Tierarztl Wochenschr 107, 359–363.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25685-0
Loading
/content/journal/micro/10.1099/mic.0.25685-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error