1887

Abstract

Benzothiophenes are a toxic and relatively recalcitrant fraction of coal-tar creosote. We investigated the co-metabolic transformation of benzothiophene (BT) and its derivatives by the carbazole (CA) degrader sp. XLDN2-5, which is not able to grow on benzothiophenes as the sole carbon source. Among the benzothiophenes tested, BT, 2-methylbenzothiophene (2-MBT) and 5-methylbenzothiophene (5-MBT) were co-metabolically converted. For 3-methylbenzothiophene, there was complete inhibition of growth on CA. The common transformation products for BT, 2-MBT and 5-MBT are the corresponding sulfoxides and sulfones. For BT, several high-molecular-mass sulfur-containing aromatic compounds, including benzo[]naphtho[1,2-]thiophene, benzo[]naphtho[1,2-]thiophene-7-oxide, 6a,11b-dihydrobenzo[]naphtho[1,2-]thiophene, 6a,11b-dihydrobenzo[]naphtho[1,2-]thiophene-7-oxide, and a new product, 6,12-epithiobenzo[]naphtho[1,2-]thiophene, were detected by GC-MS. These high-molecular-mass products are thought to be generated from a Diels–Alder-type reaction. Investigations with a combination of GC and flame ionization detection showed that about 17 % of BT was transformed to benzo[]naphtho[1,2-]thiophene. Aerobic transformation of benzothiophenes to sulfoxides and sulfones can reduce their toxicity, and facilitate their biodegradation. However, the formation of the high-molecular-mass products, such as benzo[]naphtho[1,2-]thiophene, should be considered in the biodegradation of benzothiophenes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/023176-0
2008-12-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3804.html?itemId=/content/journal/micro/10.1099/mic.0.2008/023176-0&mimeType=html&fmt=ahah

References

  1. Andersson J. T., Hegazi A. H., Roberz B. 2006; Polycyclic aromatic sulfur heterocycles as information carriers in environmental studies. Anal Bioanal Chem 386:891–905
    [Google Scholar]
  2. Annweiler E., Michaelis W., Meckenstock R. U. 2001; Anaerobic cometabolic conversion of benzothiophene by a sulfate-reducing enrichment culture and in a tar-oil-contaminated aquifer. Appl Environ Microbiol 67:5077–5083
    [Google Scholar]
  3. Boyd D. R., Sharma N. D., Boyle R., McMurray B. T., Evans T. A., Malone J. F., Dalton H., Chima J., Sheldrake G. N. 1993; Biotransformation of unsaturated heterocyclic rings by Pseudomonas putida to yield cis-diols. J Chem Soc Chem Commun 1:49–51
    [Google Scholar]
  4. Boyd D. R., Sharma N. D., Haughey S. A., Malone J. F., McMurray B. T., Sheldrake G. N., Allen C. C. R., Dalton H. 1996; Enantioselective dioxygenase-catalysed formation and thermal racemisation of chiral thiophene sulfoxides. Chem Commun 20:2363–2364
    [Google Scholar]
  5. Boyd D. R., Sharma N. D., Gunaratne N., Haughey S. A., Kennedy M. A., Malone J. F., Allen C. C. R., Dalton H. 2003; Dioxygenase-catalysed oxidation of monosubstituted thiophenes: sulfoxidation versus dihydrodiol formation. Org Biomol Chem 1:984–994
    [Google Scholar]
  6. Bressler D. C., Fedorak P. M. 2001; Identification of disulfides from the biodegradation of dibenzothiophene. Appl Environ Microbiol 67:5084–5093
    [Google Scholar]
  7. Bressler D. C., Leskiw B. K., Fedorak P. M. 1999; Biodegradation of benzothiophene sulfones by a filamentous bacterium. Can J Microbiol 45:360–368
    [Google Scholar]
  8. Bünz P. V., Cook A. M. 1993; Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: angular dioxygenation by a three-component enzyme system. J Bacteriol 175:6467–6475
    [Google Scholar]
  9. Corvini P. F. X., Schäffer A., Schlosser D. 2006; Microbial degradation of nonylphenol and other alkylphenols – our evolving view. Appl Microbiol Biotechnol 72:223–243
    [Google Scholar]
  10. Dyreborg S., Arvin E., Broholm K. 1996a; Effects of creosote compounds on the aerobic biodegradation of benzene. Biodegradation 7:191–201
    [Google Scholar]
  11. Dyreborg S., Arvin E., Broholm K. 1996b; The influence of creosote compounds on the aerobic degradation of toluene. Biodegradation 7:97–107
    [Google Scholar]
  12. Dyreborg S., Arvin E., Broholm K. 1997; Biodegradation of NSO-compounds under different redox-conditions. J Contam Hydrol 25:177–197
    [Google Scholar]
  13. Eastmond D. A., Booth G. M., Lee M. L. 1984; Toxicity, accumulation, and elimination of polycyclic aromatic sulfur heterocycles in Daphnia magna . Arch Environ Contam Toxicol 13:105–111
    [Google Scholar]
  14. Eaton R. W., Nitterauer J. D. 1994; Biotransformation of benzothiophene by isopropylbenzene-degrading bacteria. J Bacteriol 176:3992–4002
    [Google Scholar]
  15. Fedorak P. M., Grbić-Galić D. 1991; Aerobic microbial cometabolism of benzothiophene and 3-methylbenzothiophene. Appl Environ Microbiol 57:932–940
    [Google Scholar]
  16. Gai Z. H., Yu B., Li L., Wang Y., Ma C. Q., Feng J. H., Deng Z. X., Xu P. 2007; Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl Environ Microbiol 73:2832–2838
    [Google Scholar]
  17. Gilbert S. C., Morton J., Buchanan S., Oldfield C., McRoberts A. 1998; Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144:2545–2553
    [Google Scholar]
  18. Gregory D. D., Wan Z., Jenks W. S. 1997; Photodeoxygenation of dibenzothiophene sulfoxide: evidence for a unimolecular S-O cleavage mechanism. J Am Chem Soc 119:94–102
    [Google Scholar]
  19. Gundlach E. R., Boehm P. D., Marchand M., Atlas R. M., Ward D. M., Wolfe D. A. 1983; The fate of Amoco Cadiz oil. Science 221:122–129
    [Google Scholar]
  20. Kirkwood K. M., Andersson J. T., Fedorak P. M., Foght J. M., Gray M. R. 2007; Sulfur from benzothiophene and alkylbenzothiophenes supports growth of Rhodococcus sp. strain JVH1. Biodegradation 18:541–549
    [Google Scholar]
  21. Kropp K. G., Fedorak P. M. 1998; A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum. Can J Microbiol 44:605–622
    [Google Scholar]
  22. Kropp K. G., Gonçalves J. A., Andersson J. T., Fedorak P. M. 1994a; Bacterial transformations of benzothiophene and methylbenzothiophenes. Environ Sci Technol 28:1348–1356
    [Google Scholar]
  23. Kropp K. G., Gonçalves J. A., Andersson J. T., Fedorak P. M. 1994b; Microbially mediated formation of benzonaphthothiophenes from benzo[ b]thiophenes. Appl Environ Microbiol 60:3624–3631
    [Google Scholar]
  24. Kropp K. G., Andersson J. T., Fedorak P. M. 1997; Bacterial transformations of 1,2,3,4-tetrahydrodibenzothiophene and dibenzothiophene. Appl Environ Microbiol 63:3032–3042
    [Google Scholar]
  25. Licht D., Ahring B. K., Arvin E. 1996; Effects of electron acceptors, reducing agents, and toxic metabolites on anaerobic degradation of heterocyclic compounds. Biodegradation 7:83–90
    [Google Scholar]
  26. Meyer S., Steinhart H. 2000; Effects of heterocyclic PAHs (N, S, O) on the biodegradation of typical tar oil PAHs in a soil/compost mixture. Chemosphere 40:359–367
    [Google Scholar]
  27. Mueller J. G., Chapman P. J., Pritchard P. H. 1989; Creosote-contaminated sites: their potential for bioremediation. Environ Sci Technol 23:1197–1201
    [Google Scholar]
  28. Mundt M., Hollender J. 2005; Simultaneous determination of NSO-heterocycles, homocycles and their metabolites in groundwater of tar oil contaminated sites using LC with diode array UV and fluorescence detection. J Chromatogr A 1065:211–218
    [Google Scholar]
  29. Nojiri H., Nam J. W., Kosaka M., Morii K. I., Takemura T., Furihata K., Yamane H., Omori T. 1999; Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. J Bacteriol 181:3105–3113
    [Google Scholar]
  30. Resnick S. M., Gibson D. T. 1996; Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Environ Microbiol 62:4073–4080
    [Google Scholar]
  31. Safinowski M., Griebler C., Meckenstock R. U. 2006; Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies. Environ Sci Technol 40:4165–4173
    [Google Scholar]
  32. Saftić S., Fedorak P. M., Andersson J. T. 1992; Diones, sulfoxides, and sulfones from the aerobic cometabolism of methylbenzothiophenes by Pseudomonas strain BT1. Environ Sci Technol 26:1759–1764
    [Google Scholar]
  33. Seymour D. T., Verbeek A. G., Hrudey S. E., Fedorak P. M. 1997; Acute toxicity and aqueous solubility of some condensed thiophenes and their microbial metabolites. Environ Toxicol Chem 16:658–665
    [Google Scholar]
  34. Siegel B., Lanphear J. 1979; Iron-catalyzed oxidative decarboxylation of benzoylformic acid. J Am Chem Soc 101:2221–2222
    [Google Scholar]
  35. Wang X., Gai Z. H., Yu B., Feng J. H., Xu C. Y., Yuan Y., Lin Z. X., Xu P. 2007; Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Appl Environ Microbiol 73:6421–6428
    [Google Scholar]
  36. Xu P., Yu B., Li F. L., Cai X. F., Ma C. Q. 2006; Microbial degradation of sulfur, nitrogen, and oxygen heterocycles. Trends Microbiol 14:398–405
    [Google Scholar]
  37. Yu B., Ma C. Q., Zhou W. J., Zhu S. S., Wang Y., Qu J. Y., Li F. L., Xu P. 2006; Simultaneous biodetoxification of S, N and O pollutants by engineering a carbazole-degrading gene cassette in a recombinant biocatalyst. Appl Environ Microbiol 72:7373–7376
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2008/023176-0
Loading
/content/journal/micro/10.1099/mic.0.2008/023176-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error