1887

Abstract

Benzothiophenes are a toxic and relatively recalcitrant fraction of coal-tar creosote. We investigated the co-metabolic transformation of benzothiophene (BT) and its derivatives by the carbazole (CA) degrader sp. XLDN2-5, which is not able to grow on benzothiophenes as the sole carbon source. Among the benzothiophenes tested, BT, 2-methylbenzothiophene (2-MBT) and 5-methylbenzothiophene (5-MBT) were co-metabolically converted. For 3-methylbenzothiophene, there was complete inhibition of growth on CA. The common transformation products for BT, 2-MBT and 5-MBT are the corresponding sulfoxides and sulfones. For BT, several high-molecular-mass sulfur-containing aromatic compounds, including benzo[]naphtho[1,2-]thiophene, benzo[]naphtho[1,2-]thiophene-7-oxide, 6a,11b-dihydrobenzo[]naphtho[1,2-]thiophene, 6a,11b-dihydrobenzo[]naphtho[1,2-]thiophene-7-oxide, and a new product, 6,12-epithiobenzo[]naphtho[1,2-]thiophene, were detected by GC-MS. These high-molecular-mass products are thought to be generated from a Diels–Alder-type reaction. Investigations with a combination of GC and flame ionization detection showed that about 17 % of BT was transformed to benzo[]naphtho[1,2-]thiophene. Aerobic transformation of benzothiophenes to sulfoxides and sulfones can reduce their toxicity, and facilitate their biodegradation. However, the formation of the high-molecular-mass products, such as benzo[]naphtho[1,2-]thiophene, should be considered in the biodegradation of benzothiophenes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/023176-0
2008-12-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3804.html?itemId=/content/journal/micro/10.1099/mic.0.2008/023176-0&mimeType=html&fmt=ahah

References

  1. Andersson J. T., Hegazi A. H., Roberz B.. 2006; Polycyclic aromatic sulfur heterocycles as information carriers in environmental studies. Anal Bioanal Chem386:891–905
    [Google Scholar]
  2. Annweiler E., Michaelis W., Meckenstock R. U.. 2001; Anaerobic cometabolic conversion of benzothiophene by a sulfate-reducing enrichment culture and in a tar-oil-contaminated aquifer. Appl Environ Microbiol67:5077–5083
    [Google Scholar]
  3. Boyd D. R., Sharma N. D., Boyle R., McMurray B. T., Evans T. A., Malone J. F., Dalton H., Chima J., Sheldrake G. N.. 1993; Biotransformation of unsaturated heterocyclic rings by Pseudomonas putida to yield cis-diols. J Chem Soc Chem Commun1:49–51
    [Google Scholar]
  4. Boyd D. R., Sharma N. D., Haughey S. A., Malone J. F., McMurray B. T., Sheldrake G. N., Allen C. C. R., Dalton H.. 1996; Enantioselective dioxygenase-catalysed formation and thermal racemisation of chiral thiophene sulfoxides. Chem Commun20:2363–2364
    [Google Scholar]
  5. Boyd D. R., Sharma N. D., Gunaratne N., Haughey S. A., Kennedy M. A., Malone J. F., Allen C. C. R., Dalton H.. 2003; Dioxygenase-catalysed oxidation of monosubstituted thiophenes: sulfoxidation versus dihydrodiol formation. Org Biomol Chem1:984–994
    [Google Scholar]
  6. Bressler D. C., Fedorak P. M.. 2001; Identification of disulfides from the biodegradation of dibenzothiophene. Appl Environ Microbiol67:5084–5093
    [Google Scholar]
  7. Bressler D. C., Leskiw B. K., Fedorak P. M.. 1999; Biodegradation of benzothiophene sulfones by a filamentous bacterium. Can J Microbiol45:360–368
    [Google Scholar]
  8. Bünz P. V., Cook A. M.. 1993; Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: angular dioxygenation by a three-component enzyme system. J Bacteriol175:6467–6475
    [Google Scholar]
  9. Corvini P. F. X., Schäffer A., Schlosser D.. 2006; Microbial degradation of nonylphenol and other alkylphenols – our evolving view. Appl Microbiol Biotechnol72:223–243
    [Google Scholar]
  10. Dyreborg S., Arvin E., Broholm K.. 1996a; Effects of creosote compounds on the aerobic biodegradation of benzene. Biodegradation7:191–201
    [Google Scholar]
  11. Dyreborg S., Arvin E., Broholm K.. 1996b; The influence of creosote compounds on the aerobic degradation of toluene. Biodegradation7:97–107
    [Google Scholar]
  12. Dyreborg S., Arvin E., Broholm K.. 1997; Biodegradation of NSO-compounds under different redox-conditions. J Contam Hydrol25:177–197
    [Google Scholar]
  13. Eastmond D. A., Booth G. M., Lee M. L.. 1984; Toxicity, accumulation, and elimination of polycyclic aromatic sulfur heterocycles in Daphnia magna. Arch Environ Contam Toxicol13:105–111
    [Google Scholar]
  14. Eaton R. W., Nitterauer J. D.. 1994; Biotransformation of benzothiophene by isopropylbenzene-degrading bacteria. J Bacteriol176:3992–4002
    [Google Scholar]
  15. Fedorak P. M., Grbić-Galić D.. 1991; Aerobic microbial cometabolism of benzothiophene and 3-methylbenzothiophene. Appl Environ Microbiol57:932–940
    [Google Scholar]
  16. Gai Z. H., Yu B., Li L., Wang Y., Ma C. Q., Feng J. H., Deng Z. X., Xu P.. 2007; Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl Environ Microbiol73:2832–2838
    [Google Scholar]
  17. Gilbert S. C., Morton J., Buchanan S., Oldfield C., McRoberts A.. 1998; Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology144:2545–2553
    [Google Scholar]
  18. Gregory D. D., Wan Z., Jenks W. S.. 1997; Photodeoxygenation of dibenzothiophene sulfoxide: evidence for a unimolecular S-O cleavage mechanism. J Am Chem Soc119:94–102
    [Google Scholar]
  19. Gundlach E. R., Boehm P. D., Marchand M., Atlas R. M., Ward D. M., Wolfe D. A.. 1983; The fate of Amoco Cadiz oil. Science221:122–129
    [Google Scholar]
  20. Kirkwood K. M., Andersson J. T., Fedorak P. M., Foght J. M., Gray M. R.. 2007; Sulfur from benzothiophene and alkylbenzothiophenes supports growth of Rhodococcus sp. strain JVH1. Biodegradation18:541–549
    [Google Scholar]
  21. Kropp K. G., Fedorak P. M.. 1998; A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum. Can J Microbiol44:605–622
    [Google Scholar]
  22. Kropp K. G., Gonçalves J. A., Andersson J. T., Fedorak P. M.. 1994a; Bacterial transformations of benzothiophene and methylbenzothiophenes. Environ Sci Technol28:1348–1356
    [Google Scholar]
  23. Kropp K. G., Gonçalves J. A., Andersson J. T., Fedorak P. M.. 1994b; Microbially mediated formation of benzonaphthothiophenes from benzo[ b]thiophenes. Appl Environ Microbiol60:3624–3631
    [Google Scholar]
  24. Kropp K. G., Andersson J. T., Fedorak P. M.. 1997; Bacterial transformations of 1,2,3,4-tetrahydrodibenzothiophene and dibenzothiophene. Appl Environ Microbiol63:3032–3042
    [Google Scholar]
  25. Licht D., Ahring B. K., Arvin E.. 1996; Effects of electron acceptors, reducing agents, and toxic metabolites on anaerobic degradation of heterocyclic compounds. Biodegradation7:83–90
    [Google Scholar]
  26. Meyer S., Steinhart H.. 2000; Effects of heterocyclic PAHs (N, S, O) on the biodegradation of typical tar oil PAHs in a soil/compost mixture. Chemosphere40:359–367
    [Google Scholar]
  27. Mueller J. G., Chapman P. J., Pritchard P. H.. 1989; Creosote-contaminated sites: their potential for bioremediation. Environ Sci Technol23:1197–1201
    [Google Scholar]
  28. Mundt M., Hollender J.. 2005; Simultaneous determination of NSO-heterocycles, homocycles and their metabolites in groundwater of tar oil contaminated sites using LC with diode array UV and fluorescence detection. J Chromatogr A1065:211–218
    [Google Scholar]
  29. Nojiri H., Nam J. W., Kosaka M., Morii K. I., Takemura T., Furihata K., Yamane H., Omori T.. 1999; Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. J Bacteriol181:3105–3113
    [Google Scholar]
  30. Resnick S. M., Gibson D. T.. 1996; Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Environ Microbiol62:4073–4080
    [Google Scholar]
  31. Safinowski M., Griebler C., Meckenstock R. U.. 2006; Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies. Environ Sci Technol40:4165–4173
    [Google Scholar]
  32. Saftić S., Fedorak P. M., Andersson J. T.. 1992; Diones, sulfoxides, and sulfones from the aerobic cometabolism of methylbenzothiophenes by Pseudomonas strain BT1. Environ Sci Technol26:1759–1764
    [Google Scholar]
  33. Seymour D. T., Verbeek A. G., Hrudey S. E., Fedorak P. M.. 1997; Acute toxicity and aqueous solubility of some condensed thiophenes and their microbial metabolites. Environ Toxicol Chem16:658–665
    [Google Scholar]
  34. Siegel B., Lanphear J.. 1979; Iron-catalyzed oxidative decarboxylation of benzoylformic acid. J Am Chem Soc101:2221–2222
    [Google Scholar]
  35. Wang X., Gai Z. H., Yu B., Feng J. H., Xu C. Y., Yuan Y., Lin Z. X., Xu P.. 2007; Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Appl Environ Microbiol73:6421–6428
    [Google Scholar]
  36. Xu P., Yu B., Li F. L., Cai X. F., Ma C. Q.. 2006; Microbial degradation of sulfur, nitrogen, and oxygen heterocycles. Trends Microbiol14:398–405
    [Google Scholar]
  37. Yu B., Ma C. Q., Zhou W. J., Zhu S. S., Wang Y., Qu J. Y., Li F. L., Xu P.. 2006; Simultaneous biodetoxification of S, N and O pollutants by engineering a carbazole-degrading gene cassette in a recombinant biocatalyst. Appl Environ Microbiol72:7373–7376
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/023176-0
Loading
/content/journal/micro/10.1099/mic.0.2008/023176-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error