1887

Abstract

Benzothiophenes are a toxic and relatively recalcitrant fraction of coal-tar creosote. We investigated the co-metabolic transformation of benzothiophene (BT) and its derivatives by the carbazole (CA) degrader sp. XLDN2-5, which is not able to grow on benzothiophenes as the sole carbon source. Among the benzothiophenes tested, BT, 2-methylbenzothiophene (2-MBT) and 5-methylbenzothiophene (5-MBT) were co-metabolically converted. For 3-methylbenzothiophene, there was complete inhibition of growth on CA. The common transformation products for BT, 2-MBT and 5-MBT are the corresponding sulfoxides and sulfones. For BT, several high-molecular-mass sulfur-containing aromatic compounds, including benzo[]naphtho[1,2-]thiophene, benzo[]naphtho[1,2-]thiophene-7-oxide, 6a,11b-dihydrobenzo[]naphtho[1,2-]thiophene, 6a,11b-dihydrobenzo[]naphtho[1,2-]thiophene-7-oxide, and a new product, 6,12-epithiobenzo[]naphtho[1,2-]thiophene, were detected by GC-MS. These high-molecular-mass products are thought to be generated from a Diels–Alder-type reaction. Investigations with a combination of GC and flame ionization detection showed that about 17 % of BT was transformed to benzo[]naphtho[1,2-]thiophene. Aerobic transformation of benzothiophenes to sulfoxides and sulfones can reduce their toxicity, and facilitate their biodegradation. However, the formation of the high-molecular-mass products, such as benzo[]naphtho[1,2-]thiophene, should be considered in the biodegradation of benzothiophenes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/023176-0
2008-12-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3804.html?itemId=/content/journal/micro/10.1099/mic.0.2008/023176-0&mimeType=html&fmt=ahah

References

  1. Andersson, J. T., Hegazi, A. H. & Roberz, B. ( 2006; ). Polycyclic aromatic sulfur heterocycles as information carriers in environmental studies. Anal Bioanal Chem 386, 891–905.[CrossRef]
    [Google Scholar]
  2. Annweiler, E., Michaelis, W. & Meckenstock, R. U. ( 2001; ). Anaerobic cometabolic conversion of benzothiophene by a sulfate-reducing enrichment culture and in a tar-oil-contaminated aquifer. Appl Environ Microbiol 67, 5077–5083.[CrossRef]
    [Google Scholar]
  3. Boyd, D. R., Sharma, N. D., Boyle, R., McMurray, B. T., Evans, T. A., Malone, J. F., Dalton, H., Chima, J. & Sheldrake, G. N. ( 1993; ). Biotransformation of unsaturated heterocyclic rings by Pseudomonas putida to yield cis-diols. J Chem Soc Chem Commun 1, 49–51.
    [Google Scholar]
  4. Boyd, D. R., Sharma, N. D., Haughey, S. A., Malone, J. F., McMurray, B. T., Sheldrake, G. N., Allen, C. C. R. & Dalton, H. ( 1996; ). Enantioselective dioxygenase-catalysed formation and thermal racemisation of chiral thiophene sulfoxides. Chem Commun 20, 2363–2364.
    [Google Scholar]
  5. Boyd, D. R., Sharma, N. D., Gunaratne, N., Haughey, S. A., Kennedy, M. A., Malone, J. F., Allen, C. C. R. & Dalton, H. ( 2003; ). Dioxygenase-catalysed oxidation of monosubstituted thiophenes: sulfoxidation versus dihydrodiol formation. Org Biomol Chem 1, 984–994.[CrossRef]
    [Google Scholar]
  6. Bressler, D. C. & Fedorak, P. M. ( 2001; ). Identification of disulfides from the biodegradation of dibenzothiophene. Appl Environ Microbiol 67, 5084–5093.[CrossRef]
    [Google Scholar]
  7. Bressler, D. C., Leskiw, B. K. & Fedorak, P. M. ( 1999; ). Biodegradation of benzothiophene sulfones by a filamentous bacterium. Can J Microbiol 45, 360–368.[CrossRef]
    [Google Scholar]
  8. Bünz, P. V. & Cook, A. M. ( 1993; ). Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: angular dioxygenation by a three-component enzyme system. J Bacteriol 175, 6467–6475.
    [Google Scholar]
  9. Corvini, P. F. X., Schäffer, A. & Schlosser, D. ( 2006; ). Microbial degradation of nonylphenol and other alkylphenols – our evolving view. Appl Microbiol Biotechnol 72, 223–243.[CrossRef]
    [Google Scholar]
  10. Dyreborg, S., Arvin, E. & Broholm, K. ( 1996a; ). Effects of creosote compounds on the aerobic biodegradation of benzene. Biodegradation 7, 191–201.[CrossRef]
    [Google Scholar]
  11. Dyreborg, S., Arvin, E. & Broholm, K. ( 1996b; ). The influence of creosote compounds on the aerobic degradation of toluene. Biodegradation 7, 97–107.[CrossRef]
    [Google Scholar]
  12. Dyreborg, S., Arvin, E. & Broholm, K. ( 1997; ). Biodegradation of NSO-compounds under different redox-conditions. J Contam Hydrol 25, 177–197.[CrossRef]
    [Google Scholar]
  13. Eastmond, D. A., Booth, G. M. & Lee, M. L. ( 1984; ). Toxicity, accumulation, and elimination of polycyclic aromatic sulfur heterocycles in Daphnia magna. Arch Environ Contam Toxicol 13, 105–111.[CrossRef]
    [Google Scholar]
  14. Eaton, R. W. & Nitterauer, J. D. ( 1994; ). Biotransformation of benzothiophene by isopropylbenzene-degrading bacteria. J Bacteriol 176, 3992–4002.
    [Google Scholar]
  15. Fedorak, P. M. & Grbić-Galić, D. ( 1991; ). Aerobic microbial cometabolism of benzothiophene and 3-methylbenzothiophene. Appl Environ Microbiol 57, 932–940.
    [Google Scholar]
  16. Gai, Z. H., Yu, B., Li, L., Wang, Y., Ma, C. Q., Feng, J. H., Deng, Z. X. & Xu, P. ( 2007; ). Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl Environ Microbiol 73, 2832–2838.[CrossRef]
    [Google Scholar]
  17. Gilbert, S. C., Morton, J., Buchanan, S., Oldfield, C. & McRoberts, A. ( 1998; ). Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144, 2545–2553.[CrossRef]
    [Google Scholar]
  18. Gregory, D. D., Wan, Z. & Jenks, W. S. ( 1997; ). Photodeoxygenation of dibenzothiophene sulfoxide: evidence for a unimolecular S-O cleavage mechanism. J Am Chem Soc 119, 94–102.[CrossRef]
    [Google Scholar]
  19. Gundlach, E. R., Boehm, P. D., Marchand, M., Atlas, R. M., Ward, D. M. & Wolfe, D. A. ( 1983; ). The fate of Amoco Cadiz oil. Science 221, 122–129.[CrossRef]
    [Google Scholar]
  20. Kirkwood, K. M., Andersson, J. T., Fedorak, P. M., Foght, J. M. & Gray, M. R. ( 2007; ). Sulfur from benzothiophene and alkylbenzothiophenes supports growth of Rhodococcus sp. strain JVH1. Biodegradation 18, 541–549.[CrossRef]
    [Google Scholar]
  21. Kropp, K. G. & Fedorak, P. M. ( 1998; ). A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum. Can J Microbiol 44, 605–622.[CrossRef]
    [Google Scholar]
  22. Kropp, K. G., Gonçalves, J. A., Andersson, J. T. & Fedorak, P. M. ( 1994a; ). Bacterial transformations of benzothiophene and methylbenzothiophenes. Environ Sci Technol 28, 1348–1356.[CrossRef]
    [Google Scholar]
  23. Kropp, K. G., Gonçalves, J. A., Andersson, J. T. & Fedorak, P. M. ( 1994b; ). Microbially mediated formation of benzonaphthothiophenes from benzo[b]thiophenes. Appl Environ Microbiol 60, 3624–3631.
    [Google Scholar]
  24. Kropp, K. G., Andersson, J. T. & Fedorak, P. M. ( 1997; ). Bacterial transformations of 1,2,3,4-tetrahydrodibenzothiophene and dibenzothiophene. Appl Environ Microbiol 63, 3032–3042.
    [Google Scholar]
  25. Licht, D., Ahring, B. K. & Arvin, E. ( 1996; ). Effects of electron acceptors, reducing agents, and toxic metabolites on anaerobic degradation of heterocyclic compounds. Biodegradation 7, 83–90.[CrossRef]
    [Google Scholar]
  26. Meyer, S. & Steinhart, H. ( 2000; ). Effects of heterocyclic PAHs (N, S, O) on the biodegradation of typical tar oil PAHs in a soil/compost mixture. Chemosphere 40, 359–367.[CrossRef]
    [Google Scholar]
  27. Mueller, J. G., Chapman, P. J. & Pritchard, P. H. ( 1989; ). Creosote-contaminated sites: their potential for bioremediation. Environ Sci Technol 23, 1197–1201.[CrossRef]
    [Google Scholar]
  28. Mundt, M. & Hollender, J. ( 2005; ). Simultaneous determination of NSO-heterocycles, homocycles and their metabolites in groundwater of tar oil contaminated sites using LC with diode array UV and fluorescence detection. J Chromatogr A 1065, 211–218.[CrossRef]
    [Google Scholar]
  29. Nojiri, H., Nam, J. W., Kosaka, M., Morii, K. I., Takemura, T., Furihata, K., Yamane, H. & Omori, T. ( 1999; ). Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. J Bacteriol 181, 3105–3113.
    [Google Scholar]
  30. Resnick, S. M. & Gibson, D. T. ( 1996; ). Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Environ Microbiol 62, 4073–4080.
    [Google Scholar]
  31. Safinowski, M., Griebler, C. & Meckenstock, R. U. ( 2006; ). Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies. Environ Sci Technol 40, 4165–4173.[CrossRef]
    [Google Scholar]
  32. Saftić, S., Fedorak, P. M. & Andersson, J. T. ( 1992; ). Diones, sulfoxides, and sulfones from the aerobic cometabolism of methylbenzothiophenes by Pseudomonas strain BT1. Environ Sci Technol 26, 1759–1764.[CrossRef]
    [Google Scholar]
  33. Seymour, D. T., Verbeek, A. G., Hrudey, S. E. & Fedorak, P. M. ( 1997; ). Acute toxicity and aqueous solubility of some condensed thiophenes and their microbial metabolites. Environ Toxicol Chem 16, 658–665.[CrossRef]
    [Google Scholar]
  34. Siegel, B. & Lanphear, J. ( 1979; ). Iron-catalyzed oxidative decarboxylation of benzoylformic acid. J Am Chem Soc 101, 2221–2222.[CrossRef]
    [Google Scholar]
  35. Wang, X., Gai, Z. H., Yu, B., Feng, J. H., Xu, C. Y., Yuan, Y., Lin, Z. X. & Xu, P. ( 2007; ). Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Appl Environ Microbiol 73, 6421–6428.[CrossRef]
    [Google Scholar]
  36. Xu, P., Yu, B., Li, F. L., Cai, X. F. & Ma, C. Q. ( 2006; ). Microbial degradation of sulfur, nitrogen, and oxygen heterocycles. Trends Microbiol 14, 398–405.[CrossRef]
    [Google Scholar]
  37. Yu, B., Ma, C. Q., Zhou, W. J., Zhu, S. S., Wang, Y., Qu, J. Y., Li, F. L. & Xu, P. ( 2006; ). Simultaneous biodetoxification of S, N and O pollutants by engineering a carbazole-degrading gene cassette in a recombinant biocatalyst. Appl Environ Microbiol 72, 7373–7376.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/023176-0
Loading
/content/journal/micro/10.1099/mic.0.2008/023176-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error