1887

Abstract

strain ISP4 metabolizes isophthalate rapidly compared with strain PP4 and strain PPD. Isophthalate has been reported to be a potent competitive inhibitor of glutamate dehydrogenase (GDH). Exogenous supplementation of isophthalate with glutamate or -ketoglutarate at 1 mM concentration caused strains PP4 and PPD to grow faster than in the presence of isophthalate alone; however, no such effect was observed in strain ISP4. When grown on isophthalate, all strains showed activity of NADP-dependent GDH (NADP-GDH), while cells grown on glucose, 2× yeast extract-tryptone broth (2YT) or glutamate showed activities of both NAD-dependent GDH (NAD-GDH) and NADP-GDH. Activity staining, inhibition and thermal stability studies indicated the carbon source-dependent presence of two (GDH and GDH), three (GDH, GDH and GDH) and one (GDH) forms of NADP-GDH in strains PP4, PPD and ISP4, respectively. The results demonstrate the carbon source-dependent modulation of different forms of NADP-GDH in these bacterial strains. This modulation may help the efficient utilization of isophthalate as a carbon source by overcoming the inhibitory effect on GDH.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/022087-0
2008-11-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3329.html?itemId=/content/journal/micro/10.1099/mic.0.2008/022087-0&mimeType=html&fmt=ahah

References

  1. Abrahams, G. L. & Abratt, V. R. ( 1998; ). The NADH-dependent glutamate dehydrogenase enzyme of Bacteroides fragilis Bf1 is induced by peptides in the growth medium. Microbiology 144, 1659–1667.[CrossRef]
    [Google Scholar]
  2. Ballou, D. & Batie, C. ( 1988; ). Phthalate oxygenase, a Rieske iron-sulfur protein from Pseudomonas cepacia. Prog Clin Biol Res 274, 211–226.
    [Google Scholar]
  3. Basu, A., Dixit, S. S. & Phale, P. S. ( 2003; ). Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86. Appl Microbiol Biotechnol 62, 579–585.[CrossRef]
    [Google Scholar]
  4. Batie, C. J., LaHaie, E. & Ballou, D. P. ( 1987; ). Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. J Biol Chem 262, 1510–1518.
    [Google Scholar]
  5. Bellion, E. & Tan, F. ( 1984; ). NADP-dependent glutamate dehydrogenase from a facultative methylotroph, Pseudomonas sp. strain AM1. J Bacteriol 157, 435–439.
    [Google Scholar]
  6. Bonete, M. J., Camacho, M. L. & Cadenas, E. ( 1990; ). Analysis of the kinetic mechanism of halophilic NADP-dependent glutamate dehydrogenase. Biochim Biophys Acta 1041, 305–310.[CrossRef]
    [Google Scholar]
  7. Bonete, M. J., Perez-Pomares, F., Diaz, S., Ferrer, J. & Oren, A. ( 2003; ). Occurrence of two different glutamate dehydrogenase activities in the halophilic bacterium Salinibacter ruber. FEMS Microbiol Lett 226, 181–186.[CrossRef]
    [Google Scholar]
  8. Boots, S. G., Franklin, M. A., Dunlavey, B., Costello, J., Lipsitz, C., Boots, M. R. & Rogers, K. S. ( 1976; ). Synthesis of 5-substituted isophthalic acids and competitive inhibition studies with bovine liver glutamate dehydrogenase. Proc Soc Exp Biol Med 151, 316–320.[CrossRef]
    [Google Scholar]
  9. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  10. Brown, C. M., Macdonald-Brown, D. S. & Stanley, S. O. ( 1973; ). The mechanisms of nitrogen assimilation in pseudomonads. Antonie Van Leeuwenhoek 39, 89–98.[CrossRef]
    [Google Scholar]
  11. Camardella, L., Di Fraia, R., Antignani, A., Ciardiello, M. A., di Prisco, G., Coleman, J. K., Buchon, L., Guespin, J. & Russell, N. J. ( 2002; ). The Antarctic Psychrobacter sp. TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities. Characterisation of the NAD+-dependent enzyme. Comp Biochem Physiol A Mol Integr Physiol 131, 559–567.[CrossRef]
    [Google Scholar]
  12. Caughey, W. S., Hellerman, L. & Smiley, J. D. ( 1957; ). l-Glutamic acid dehydrogenase; structural requirements for substrate competition; effect of thyroxine. J Biol Chem 224, 591–607.
    [Google Scholar]
  13. Chatterjee, S. & Dutta, T. K. ( 2003; ). Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem Biophys Res Commun 309, 36–43.[CrossRef]
    [Google Scholar]
  14. Cunliffe, D., Leason, M., Parkin, D. & Lea, P. J. ( 1983; ). The inhibition of glutamate dehydrogenase by derivatives of isophthalic acid. Phytochemistry 22, 1357–1360.[CrossRef]
    [Google Scholar]
  15. Deluna, A., Avendano, A., Riego, L. & Gonzalez, A. ( 2001; ). NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 276, 43775–43783.[CrossRef]
    [Google Scholar]
  16. Dillingham, E. O. & Autian, J. ( 1973; ). Teratogenicity, mutagenicity, and cellular toxicity of phthalate esters. Environ Health Perspect 3, 81–89.[CrossRef]
    [Google Scholar]
  17. Eaton, R. W. ( 2001; ). Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183, 3689–3703.[CrossRef]
    [Google Scholar]
  18. Eaton, R. W. & Ribbons, D. W. ( 1982; ). Metabolism of dimethylphthalate by Micrococcus sp. strain 12B. J Bacteriol 151, 465–467.
    [Google Scholar]
  19. Garnier, A., Berredjem, A. & Botton, B. ( 1997; ). Purification and characterization of the NAD-dependent glutamate dehydrogenase in the ectomycorrhizal fungus Laccaria bicolor (Maire) orton. Fungal Genet Biol 22, 168–176.[CrossRef]
    [Google Scholar]
  20. Gesler, R. M. ( 1973; ). Toxicology of di-2-ethylhexyl phthalate and other phthalic acid ester plasticizers. Environ Health Perspect 3, 73–79.[CrossRef]
    [Google Scholar]
  21. Hudson, R. C. & Daniel, R. M. ( 1993; ). l-Glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B 106, 767–792.
    [Google Scholar]
  22. Jaeger, R. J. & Rubin, R. J. ( 1973; ). Extraction, localization, and metabolism of di-2-ethylhexyl phthalate from PVC plastic medical devices. Environ Health Perspect 3, 95–102.[CrossRef]
    [Google Scholar]
  23. Keyser, P., Pujar, B. G., Eaton, R. W. & Ribbons, D. W. ( 1976; ). Biodegradation of the phthalates and their esters by bacteria. Environ Health Perspect 18, 159–166.[CrossRef]
    [Google Scholar]
  24. Koch, H. M., Drexler, H. & Angerer, J. ( 2003; ). An estimation of the daily intake of di(2-ethylhexyl)phthalate (DEHP) and other phthalates in the general population. Int J Hyg Environ Health 206, 77–83.[CrossRef]
    [Google Scholar]
  25. Krauskopf, L. G. ( 1973; ). Studies on the toxicity of phthalates via ingestion. Environ Health Perspect 3, 61–72.[CrossRef]
    [Google Scholar]
  26. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  27. LeJohn, H. B. & Jackson, S. ( 1968; ). Allosteric interactions of a regulatory nicotinamide adenine dinucleotide-specific glutamate dehydrogenase from Blastocladiella. A molecular model for the enzyme. J Biol Chem 243, 3447–3457.
    [Google Scholar]
  28. LeJohn, H. B. & McCrea, B. E. ( 1968; ). Evidence for two species of glutamate dehydrogenases in Thiobacillus novellus. J Bacteriol 95, 87–94.
    [Google Scholar]
  29. Lu, C. D. & Abdelal, A. T. ( 2001; ). The gdhB gene of Pseudomonas aeruginosa encodes an arginine-inducible NAD+-dependent glutamate dehydrogenase which is subject to allosteric regulation. J Bacteriol 183, 490–499.[CrossRef]
    [Google Scholar]
  30. Maurizi, M. R. & Rasulova, F. ( 2002; ). Degradation of l-glutamate dehydrogenase from Escherichia coli: allosteric regulation of enzyme stability. Arch Biochem Biophys 397, 206–216.[CrossRef]
    [Google Scholar]
  31. Moyano, E., Cardenas, J. & Muñoz-Blanco, J. ( 1992; ). Purification and properties of three NAD(P)+ isozymes of l-glutamate dehydrogenase of Chlamydomonas reinhardtii. Biochim Biophys Acta 1119, 63–68.[CrossRef]
    [Google Scholar]
  32. Muñoz-Blanco, J., Moyano, E. & Cárdenas, J. ( 1989; ). Glutamate dehydrogenase isozymes of Chlamydomonas reinhardtii. FEMS Microbiol Lett 61, 315–318.[CrossRef]
    [Google Scholar]
  33. Noor, S. & Punekar, N. S. ( 2005; ). Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon–nitrogen interface. Microbiology 151, 1409–1419.[CrossRef]
    [Google Scholar]
  34. Pagliarulo, C., Salvatore, P., De Vitis, L. R., Colicchio, R., Monaco, C., Tredici, M., Tala, A., Bardaro, M., Lavitola, A. & other authors ( 2004; ). Regulation and differential expression of gdhA encoding NADP-specific glutamate dehydrogenase in Neisseria meningitidis clinical isolates. Mol Microbiol 51, 1757–1772.[CrossRef]
    [Google Scholar]
  35. Phale, P. S., Basu, A., Majhi, P. D., Deveryshetty, J., Vamsee-Krishna, C. & Shrivastava, R. ( 2007; ). Metabolic diversity in bacterial degradation of aromatic compounds. OMICS 11, 252–279.[CrossRef]
    [Google Scholar]
  36. Quan, C. S., Liu, Q., Tian, W. J., Kikuchi, J. & Fan, S. D. ( 2005; ). Biodegradation of an endocrine-disrupting chemical, di-2-ethylhexyl phthalate, by Bacillus subtilis No. 66. Appl Microbiol Biotechnol 66, 702–710.[CrossRef]
    [Google Scholar]
  37. Rogers, K. S., Boots, M. R. & Boots, S. G. ( 1972; ). Molecular interactions of six aromatic competitive inhibitors with bovine liver glutamate dehydrogenase. Biochim Biophys Acta 258, 343–350.[CrossRef]
    [Google Scholar]
  38. Rubin, R. J. & Jaeger, R. J. ( 1973; ). Some pharmacologic and toxicologic effects of di-2-ethylhexyl phthalate (DEHP) and other plasticizers. Environ Health Perspect 3, 53–59.[CrossRef]
    [Google Scholar]
  39. Schinkinger, M. F., Redl, B. & Stoffler, G. ( 1991; ). Purification and properties of an extreme thermostable glutamate dehydrogenase from the archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta 1073, 142–148.[CrossRef]
    [Google Scholar]
  40. Schlafli, H. R., Weiss, M. A., Leisinger, T. & Cook, A. M. ( 1994; ). Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol 176, 6644–6652.
    [Google Scholar]
  41. Shigematsu, T., Yumihara, K., Ueda, Y., Numaguchi, M., Morimura, S. & Kida, K. ( 2003; ). Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 53, 1479–1483.[CrossRef]
    [Google Scholar]
  42. Smith, T. J., Peterson, P. E., Schmidt, T., Fang, J. & Stanley, C. A. ( 2001; ). Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J Mol Biol 307, 707–720.[CrossRef]
    [Google Scholar]
  43. Smith, T. J., Schmidt, T., Fang, J., Wu, J., Siuzdak, G. & Stanley, C. A. ( 2002; ). The structure of apo human glutamate dehydrogenase details subunit communication and allostery. J Mol Biol 318, 765–777.[CrossRef]
    [Google Scholar]
  44. Smits, R. A., Pieper, F. R. & van der Drift, C. ( 1984; ). Purification of NADP-dependent glutamate dehydrogenase from Pseudomonas aeruginosa and immunochemical characterization of its in vivo inactivation. Biochim Biophys Acta 801, 32–39.[CrossRef]
    [Google Scholar]
  45. Stevens, L., Duncan, D. & Robertson, P. ( 1989; ). Purification and characterisation of NAD-glutamate dehydrogenase from Aspergillus nidulans. FEMS Microbiol Lett 48, 173–177.
    [Google Scholar]
  46. Syed, S. E., Engel, P. C. & Parker, D. M. ( 1991; ). Functional studies of a glutamate dehydrogenase with known three-dimensional structure: steady-state kinetics of the forward and reverse reactions catalysed by the NAD+-dependent glutamate dehydrogenase of Clostridium symbiosum. Biochim Biophys Acta 1115, 123–130.[CrossRef]
    [Google Scholar]
  47. Tarasev, M. & Ballou, D. P. ( 2005; ). Chemistry of the catalytic conversion of phthalate into its cis-dihydrodiol during the reaction of oxygen with the reduced form of phthalate dioxygenase. Biochemistry 44, 6197–6207.[CrossRef]
    [Google Scholar]
  48. Tepper, L. B. ( 1973; ). Phthalic acid esters – an overview. Environ Health Perspect 3, 179–182.
    [Google Scholar]
  49. Vamsee-Krishna, C. & Phale, P. S. ( 2008; ). Bacterial degradation of phthalate isomers and their esters. Indian J Microbiol 48, 19–34.[CrossRef]
    [Google Scholar]
  50. Vamsee-Krishna, C., Mohan, Y. & Phale, P. S. ( 2006; ). Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4. Appl Microbiol Biotechnol 72, 1263–1269.[CrossRef]
    [Google Scholar]
  51. Wang, Y. Z., Zhou, Y. & Zylstra, G. J. ( 1995; ). Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D. Environ Health Perspect 103, 9–12.[CrossRef]
    [Google Scholar]
  52. Wang, Y., Fan, Y. & Gu, J. D. ( 2003; ). Microbial degradation of the endocrine-disrupting chemicals phthalic acid and dimethyl phthalate ester under aerobic conditions. Bull Environ Contam Toxicol 71, 810–818.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/022087-0
Loading
/content/journal/micro/10.1099/mic.0.2008/022087-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error