1887

Abstract

SpiC is a virulence factor encoded within pathogenicity island 2 (SPI-2). We have previously reported that infection of macrophages with serovar Typhimurium results in the SPI-2-dependent activation of the mitogen-activated protein kinase (MAPK) signalling pathways, leading to the expression of suppressor of cytokine signalling (SOCS)-3, which is involved in the inhibition of cytokine signalling. Here, we investigated the mechanism by which SpiC mediates the activation of signal transduction pathways in macrophages. Proteomic analysis showed that the level of FliC protein, a component of the flagellar filaments, was lower in the culture supernatant of a mutant than in the supernatant from wild-type . Furthermore, quantitative real-time RT-PCR showed that this mutant had a much lower level of mRNA, indicating that SpiC regulates the transcription of FliC. We also found that the level of SOCS-3 in J774 macrophages was lower when they were infected with the mutant than with wild-type . FliC participated in the activation of MAPK pathways in -infected macrophages, leading to the upregulation of SOCS-3 expression. Collectively, these results indicate that SpiC is involved in the expression of FliC, which plays a significant role in the SPI-2-dependent activation of MAPK pathways in -infected macrophages.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/021667-0
2008-11-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3491.html?itemId=/content/journal/micro/10.1099/mic.0.2008/021667-0&mimeType=html&fmt=ahah

References

  1. Aizawa, S. I. ( 2001; ). Bacterial flagella and type III secretion systems. FEMS Microbiol Lett 202, 157–164.[CrossRef]
    [Google Scholar]
  2. Akira, S. & Takeda, K. ( 2004; ). Toll-like receptor signalling. Nat Immunol 4, 499–511.[CrossRef]
    [Google Scholar]
  3. Alaniz, R. C., Cummings, L. A., Bergman, M. A., Rassoulian-Barrett, S. L. & Cookson, B. T. ( 2006; ). Salmonella typhimurium coordinately regulates FliC location and reduces dendritic cell activation and antigen presentation to CD4+ T cells. J Immunol 177, 3983–3993.[CrossRef]
    [Google Scholar]
  4. Baldwin, A. S., Jr ( 1996; ). The NF-κB and I-κB proteins: new discoveries and insights. Annu Rev Immunol 14, 649–681.[CrossRef]
    [Google Scholar]
  5. Bhardwaj, N., Nash, T. W. & Horwitz, M. A. ( 1986; ). Interferon-γ-activated human monocytes inhibit the intracellular multiplication of Legionella pneumophila. J Immunol 137, 2662–2669.
    [Google Scholar]
  6. Bode, J. G., Nimmesgern, A., Schmitz, J., Schaper, F., Schmitt, M., Frisch, W., Häussinger, D., Heinrich, P. C. & Graeve, L. ( 1999; ). LPS and TNFα induce SOCS3 mRNA and inhibit IL-6-induced activation of STAT3 in macrophages. FEBS Lett 463, 365–370.[CrossRef]
    [Google Scholar]
  7. Bogdan, C. & Nathan, C. ( 1993; ). Modulation of macrophage function by transforming growth factor β, interleukin-4, and interleukin-10. Ann N Y Acad Sci 685, 713–739.[CrossRef]
    [Google Scholar]
  8. Brown, K., Gerstberger, S., Carlson, L., Franzoso, G. & Siebenlist, U. ( 1995; ). Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485–1488.[CrossRef]
    [Google Scholar]
  9. Cummings, L. A., Wilkerson, W. D., Bergsbaken, T. & Cookson, B. T. ( 2006; ). In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol Microbiol 61, 795–809.[CrossRef]
    [Google Scholar]
  10. Dalpke, A. H., Opper, S., Zimmermann, S. & Heeg, K. ( 2001; ). Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs. J Immunol 166, 7082–7089.[CrossRef]
    [Google Scholar]
  11. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  12. Eaves-Pyles, T., Murthy, K., Liaudet, L., Virag, L., Ross, G., Soriano, F. G., Szabo, C. & Salzman, A. L. ( 2001; ). Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: IκBα degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J Immunol 166, 1248–1260.[CrossRef]
    [Google Scholar]
  13. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. & Hinton, J. C. D. ( 2003; ). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47, 103–118.
    [Google Scholar]
  14. Franchi, L., Am, A., Body-Malapel, M., Kanneganti, T. D., Ozören, N., Jagirdar, R., Inohara, N., Vandenabeele, P., Bertin, J. A. & other authors ( 2006; ). Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in Salmonella-infected macrophages. Nat Immunol 7, 576–582.[CrossRef]
    [Google Scholar]
  15. Freeman, J. A., Rapple, C., Kuhle, V., Hensel, M. & Miller, S. I. ( 2002; ). SpiC is required for translocation of Salmonella pathogenicity island 2 effectors and secretion of translocon proteins SseB and SseC. J Bacteriol 184, 4971–4980.[CrossRef]
    [Google Scholar]
  16. Galan, J. E. ( 2001; ). Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17, 53–86.[CrossRef]
    [Google Scholar]
  17. Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. & Madara, J. L. ( 2001a; ). Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167, 1882–1885.[CrossRef]
    [Google Scholar]
  18. Gewirtz, A. T., Jr, Simon, P. O., Schmitt, C. K., Taylor, L. J., Hagedorn, C. H., O'Brien, A. D., Neish, A. S. & Madara, J. L. ( 2001b; ). Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J Clin Invest 107, 99–109.[CrossRef]
    [Google Scholar]
  19. Green, S. J., Crawford, R. M., Hockmeyer, J. T., Meltzer, M. S. & Nacy, C. A. ( 1990; ). Leishmania major amastigotes initiate the l-arginine-dependent killing mechanism in IFN-γ-stimulated macrophages by induction of tumor necrosis factor-α. J Immunol 145, 4290–4297.
    [Google Scholar]
  20. Groisman, E. A., Blanc-Portard, A.-B. & Uchiya, K. ( 1999; ). Pathogenicity islands and the evolution of Salmonella virulence. In Pathogenicity Islands and Other Mobile Virulence Elements, pp. 127–150. Edited by J. B. Kaper & J. Hacker. Washington, DC: American Society for Microbiology.
  21. Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M. & other authors ( 2001; ). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103.[CrossRef]
    [Google Scholar]
  22. Hayashi, T., Kaneda, T., Toyama, Y., Kumegawa, M. & Hakeda, Y. ( 2002; ). Regulation of receptor activator of NF-κB ligand-induced osteoclastogenesis by endogenous interferon-β (IFN-β) and suppressors of cytokine signaling (SOCS). J Biol Chem 277, 27880–27886.[CrossRef]
    [Google Scholar]
  23. Hensel, M., Shea, J. E., Raupach, B., Monack, D., Falkow, S., Gleeson, C., Kubo, T. & Holden, D. W. ( 1997; ). Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella pathogenicity island 2. Mol Microbiol 24, 155–167.[CrossRef]
    [Google Scholar]
  24. Hensel, M., Shea, J. E., Waterman, S. R., Mundy, R., Nikolaus, T., Banks, G., Vazquez-Torres, A., Gleeson, C., Fang, F. C. & other authors ( 1998; ). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30, 163–174.[CrossRef]
    [Google Scholar]
  25. Ikeda, T., Oosawa, K. & Hotani, H. ( 1996; ). Self-assembly of the filament capping protein, FliD, of bacterial flagella into an annular structure. J Mol Biol 259, 679–686.[CrossRef]
    [Google Scholar]
  26. Janeway, C. A., Jr & Medzhitov, R. ( 2002; ). Innate immune recognition. Annu Rev Immunol 20, 197–216.[CrossRef]
    [Google Scholar]
  27. Kile, B. T. & Alexander, W. S. ( 2001; ). The suppressors of cytokine signaling (SOCS). Cell Mol Life Sci 58, 1627–1635.[CrossRef]
    [Google Scholar]
  28. Komoriya, K., Shibano, N., Higano, T., Azuma, N., Yamaguchi, S. & Aizawa, S. ( 1999; ). Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol Microbiol 34, 767–779.[CrossRef]
    [Google Scholar]
  29. Kunkel, S. L., Spengler, M., May, M. A., Spengler, R., Larrick, J. & Remick, D. ( 1988; ). Prostaglandin E2 regulates macrophage-derived tumor necrosis factor gene expression. J Biol Chem 263, 5380–5384.
    [Google Scholar]
  30. Lee, A. H., Zareei, M. P. & Daefler, S. ( 2002; ). Identification of a NIPSNAP homologue as host cell target for Salmonella virulence protein SpiC. Cell Microbiol 4, 739–750.[CrossRef]
    [Google Scholar]
  31. Lyons, S., Wang, L., Casanova, J. E., Sitaraman, S. V., Merlin, D. & Gewirtz, A. T. ( 2004; ). Salmonella typhimurium transcytoses flagellin via an SPI-2-mediated vesicular transport pathway. J Cell Sci 117, 5771–5780.[CrossRef]
    [Google Scholar]
  32. Macnab, R. M. ( 1996; ). Flagella and motility. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, pp. 123–145. Edited by F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter & other authors. Washington, DC: American Society for Microbiology.
  33. Macnab, R. M. ( 2004; ). Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta 1694, 207–217.[CrossRef]
    [Google Scholar]
  34. Malo, M. S. & Loughlin, R. E. ( 1988; ). Promoter-detection vectors for Escherichia coli with multiple useful features. Gene 64, 207–215.[CrossRef]
    [Google Scholar]
  35. May, M. J. & Ghosh, S. ( 1998; ). Signal transduction through NF-κB. Immunol Today 19, 80–88.[CrossRef]
    [Google Scholar]
  36. Miao, E. A., Alpuche-Aranda, C. M., Dors, M., Clark, A. E., Bader, M. W., Miller, S. I. & Aderem, A. ( 2006; ). Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat Immunol 7, 569–575.[CrossRef]
    [Google Scholar]
  37. Miller, J. ( 1972; ). Experiments in Molecular Genetics, pp. 352–355. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Molofsky, A. B., Byrne, B. G., Whitfield, N. N., Madigan, C. A., Fuse, E. T., Tateda, K. & Swanson, M. S. ( 2006; ). Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203, 1093–1104.[CrossRef]
    [Google Scholar]
  39. Ochman, H., Soncini, F. C., Solomon, F. & Groisman, E. A. ( 1996; ). Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A 93, 7800–7804.[CrossRef]
    [Google Scholar]
  40. O'Farrell, A. M., Liu, Y., Moore, K. W. & Mui, A. L.-F. ( 1998; ). IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat 3-dependent and -independent pathways. EMBO J 17, 1006–1018.[CrossRef]
    [Google Scholar]
  41. Ogushi, K., Wada, A., Niidome, T., Mori, N., Oishi, K., Nagatake, T., Takahashi, A., Asakura, H., Makino, S. & other authors ( 2001; ). Salmonella enteritidis FliC (flagella filament protein) induces human β-defensin-2 mRNA production by Caco-2 cells. J Biol Chem 276, 30521–30526.[CrossRef]
    [Google Scholar]
  42. Okugawa, S., Yanagimoto, S., Tsukada, K., Kitazawa, T., Koike, K., Kimura, S., Nagase, H., Hirai, K. & Ota, Y. ( 2006; ). Bacterial flagellin inhibits T cell receptor-mediated activation of T cells by inducing suppressor of cytokine signalling-1 (SOCS-1). Cell Microbiol 8, 1571–1580.[CrossRef]
    [Google Scholar]
  43. Poltorak, A., He, X., Smirnova, L., Liu, M. Y., Van Huffel, C. X., Birdwell, D., Alejos, E., Silva, M., Galanos, C. & other authors ( 1998; ). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.[CrossRef]
    [Google Scholar]
  44. Reed, K. A., Hobert, M. E., Kolenda, C. E., Sands, K. A., Rathman, M., O'Connor, M., Lyons, S., Gewirtz, A. T., Sansonetti, P. J. & other authors ( 2002; ). The Salmonella typhimurium flagellar basal body protein FliE is required for flagellin production and to induce a proinflammatory response in epithelial cells. J Biol Chem 277, 13346–13353.[CrossRef]
    [Google Scholar]
  45. Ren, T., Zamboni, D. S., Roy, C. R., Dietrich, W. F. & Vance, R. E. ( 2006; ). Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2, e18 [CrossRef]
    [Google Scholar]
  46. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. & Kirschning, C. J. ( 1999; ). Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J Biol Chem 274, 17406–17409.[CrossRef]
    [Google Scholar]
  47. Shea, J. E., Hensel, M., Gleeson, C. & Holden, D. W. ( 1996; ). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93, 2593–2597.[CrossRef]
    [Google Scholar]
  48. Shotland, Y., Krämer, H. & Groisman, E. A. ( 2003; ). The Salmonella SpiC protein targets the mammalian Hook3 protein function to alter cellular trafficking. Mol Microbiol 49, 1565–1576.[CrossRef]
    [Google Scholar]
  49. Sierro, F., Dubois, B., Coste, A., Kaiserlian, D., Kraehenbuhl, J. P. & Sirard, J. C. ( 2001; ). Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Natl Acad Sci U S A 98, 13722–13727.[CrossRef]
    [Google Scholar]
  50. Silverman, M. ( 1979; ). Phase variation in Salmonella: genetic analysis of a recombinational switch. Proc Natl Acad Sci U S A 76, 391–395.[CrossRef]
    [Google Scholar]
  51. Song, M. M. & Shuai, K. ( 1998; ). The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem 273, 35056–35062.[CrossRef]
    [Google Scholar]
  52. Starr, R., Willson, T. A., Viney, E. M., Murray, L. J., Rayner, J. R., Jenkins, B. J., Gonda, T. J., Alexander, W. S., Metcalf, D. & other authors ( 1997; ). A family of cytokine-inducible inhibitors of signaling. Nature 387, 917–921.[CrossRef]
    [Google Scholar]
  53. Stoiber, D., Kovarik, P., Cohney, S., Johnston, J. A., Steinlein, P. & Decker, T. ( 1999; ). Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-γ. J Immunol 163, 2640–2647.
    [Google Scholar]
  54. Stoiber, D., Stockinger, S., Steinlein, P., Kovarik, J. & Decker, T. ( 2001; ). Listeria monocytogenes modulates macrophage cytokine responses through STAT serine phosphorylation and the induction of suppressor of cytokine signaling 3. J Immunol 166, 466–472.[CrossRef]
    [Google Scholar]
  55. Strassmann, G., Patil-koota, V., Finkelman, F., Fong, M. & Kambayashi, T. ( 1994; ). Evidence for the involvement of interleukin 10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2. J Exp Med 180, 2365–2370.[CrossRef]
    [Google Scholar]
  56. Suzuki, Y., Orellana, M. A., Schreiber, R. D. & Remington, J. S. ( 1988; ). Interferon-γ: the major mediator of resistance against Toxoplasma gondii. Science 240, 516–518.[CrossRef]
    [Google Scholar]
  57. Suzuki, A., Hanada, T., Mitsuyama, K., Yoshida, T., Kamizono, S., Hoshino, T., Kubo, M., Yamashita, A., Okabe, M. & other authors ( 2001; ). CIS/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med 193, 471–481.[CrossRef]
    [Google Scholar]
  58. Takahashi, A., Wada, A., Ogushi, K., Maeda, K., Kawahara, T., Mawatari, K., Kurazono, H., Moss, J., Hirayama, T. & other authors ( 2001; ). Production of β-defensin-2 by human colonic epithelial cells induced by Salmonella enteritidis flagella filament structural protein. FEBS Lett 508, 484–488.[CrossRef]
    [Google Scholar]
  59. Uchiya, K. & Nikai, T. ( 2004; ). Salmonella enterica serovar Typhimurium infection induces cyclooxygenase 2 expression in macrophages: involvement of Salmonella pathogenicity island 2. Infect Immun 72, 6860–6869.[CrossRef]
    [Google Scholar]
  60. Uchiya, K. & Nikai, T. ( 2005; ). Salmonella pathogenicity island 2-dependent expression of suppressor of cytokine signaling 3 in macrophages. Infect Immun 73, 5587–5594.[CrossRef]
    [Google Scholar]
  61. Uchiya, K., Barbieri, M. A., Funato, K., Shah, A. H., Stahl, P. D. & Groisman, E. A. ( 1999; ). A Salmonella virulence protein that inhibits cellular trafficking. EMBO J 18, 3924–3933.[CrossRef]
    [Google Scholar]
  62. Uchiya, K., Groisman, E. A. & Nikai, T. ( 2004; ). Involvement of Salmonella pathogenicity island 2 in the up-regulation of interleukin-10 expression in macrophages: role of protein kinase A signal pathway. Infect Immun 72, 1964–1973.[CrossRef]
    [Google Scholar]
  63. van Dissel, J. T., Stikkelbroeck, J. J., Michel, B. B., van den Barselaar, M. T., Leijh, P. C. & van Furth, R. ( 1987; ). Inability of recombinant interferon-gamma to activate the antibacterial activity of mouse peritoneal macrophages against Listeria monocytogenes and Salmonella typhimurium. J Immunol 139, 1673–1678.
    [Google Scholar]
  64. Yamamoto, S. & Kutsukake, K. ( 2006; ). FljA-mediated posttranscriptional control of phase 1 flagellin expression in flagellar phase variation of Salmonella enterica serovar Typhimurium. J Bacteriol 188, 958–967.[CrossRef]
    [Google Scholar]
  65. Yasukawa, H., Misawa, H., Sakamoto, H., Masuhara, M., Sasaki, A., Wakioka, T., Ohtsuka, S., Imaizumi, T., Matsuda, T. & other authors ( 1999; ). The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J 18, 1309–1320.[CrossRef]
    [Google Scholar]
  66. Yoshimura, A., Ohkubo, T., Kiguchi, T., Jenkins, N. A., Gilbert, D. J., Copeland, N. G., Hara, T. & Miyajima, A. ( 1995; ). A novel cytokine-inducible gene CIS encodes an SH-2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 14, 2816–2826.
    [Google Scholar]
  67. Yu, X.-J., Ruiz-Albert, J., Unsworth, K. E., Garvis, S., Liu, M. & Holden, D. W. ( 2002; ). SpiC is required for secretion of Salmonella pathogenicity island 2 type III secretion system proteins. Cell Microbiol 4, 531–540.[CrossRef]
    [Google Scholar]
  68. Yu, X.-J., Liu, M. & Holden, D. W. ( 2004; ). SsaM and SpiC interact and regulate secretion of Salmonella pathogenicity island 2 type III secretion system effectors and translocators. Mol Microbiol 54, 604–619.[CrossRef]
    [Google Scholar]
  69. Zeng, H., Carlson, A. Q., Guo, Y., Yu, Y., Collier-Hyams, L. S., Madara, J. L., Gewirtz, A. T. & Neish, A. S. ( 2003; ). Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J Immunol 171, 3668–3674.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/021667-0
Loading
/content/journal/micro/10.1099/mic.0.2008/021667-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error