1887

Abstract

Swarm-cell differentiation in serovar Typhimurium () results in a biosynthetic mode of growth, despite growing on a rich medium, and cells that have elevated antibiotic resistance. These phenotypes are not a prerequisite for swarm motility. By blocking the switch to anabolic growth using amino acid auxotrophs and screening for the presence of elevated antibiotic resistance in the swarm state, we found that cysteine biosynthesis is crucial for complete swarm-cell differentiation. Mutants were made in each biosynthetic operon and all had decreased antibiotic resistance in the swarm state, while swim-cell resistance remained the same as that of wild-type cells. This swarm-state-specific decreased resistance in Δ strains could be restored to wild-type levels by the addition of cysteine to swarm medium. Two regulatory mutants, Δ and Δ, failed to swarm unless cysteine was supplemented to the medium. We show that all CysB-responsive operons involved in cysteine biosynthesis are upregulated in the swarm state, even though swarm cells are cultivated on a medium that represses cysteine biosynthesis in the swim state. While swarm medium has sufficient cysteine for growth of , it does not contain enough for swarm-cell differentiation. We hypothesize that in these cells, the additional cysteine requirement is for use in pathways not directly related to cell growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/020347-0
2008-11-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3410.html?itemId=/content/journal/micro/10.1099/mic.0.2008/020347-0&mimeType=html&fmt=ahah

References

  1. Allison C., Lai H. C., Hughes C.. 1992a; Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol6:1583–1591
    [Google Scholar]
  2. Allison C., Coleman N., Jones P. L., Hughes C.. 1992b; Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun60:4740–4746
    [Google Scholar]
  3. Anton D. N.. 2000; Induction of the cysteine regulon of Salmonella typhimurium in LB medium affects the response of cysB mutants to mecillinam. Curr Microbiol40:72–77
    [Google Scholar]
  4. Balaban N. Q., Merrin J., Chait R., Kowalik L., Leibler S.. 2004; Bacterial persistence as a phenotypic switch. Science305:1622–1625
    [Google Scholar]
  5. Baptist E. W., Kredich N. M.. 1977; Regulation of l-cysteine transport in Salmonella typhimurium. J Bacteriol131:111–118
    [Google Scholar]
  6. Bjarnason J., Southward C. M., Surette M. G.. 2003; Genomic profiling of iron-responsive genes in Salmonella enterica serovar Typhimurium by high-throughput screening of a random promoter library. J Bacteriol185:4973–4982
    [Google Scholar]
  7. Bjur E., Eriksson-Ygberg S., Fredrik Aslund F., Rhen M.. 2006; Thioredoxin 1 promotes intracellular replication and virulence of Salmonella enterica serovar Typhimurium. Infect Immun74:5140–5151
    [Google Scholar]
  8. Burkart M., Toguchi A., Harshey R. M.. 1998; The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proc Natl Acad Sci U S A95:2568–2573
    [Google Scholar]
  9. Carmel-Harel O., Storz G.. 2000; Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol54:439–461
    [Google Scholar]
  10. Costa C. S., Anton D. N.. 2006; High-level resistance to mecillinam produced by inactivation of soluble lytic transglycosylase in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett256:311–317
    [Google Scholar]
  11. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645
    [Google Scholar]
  12. Eaves D. J., Ricci V., Piddock L. J. V.. 2004; Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance. Antimicrob Agents Chemother48:1145–1150
    [Google Scholar]
  13. Fraser G. M., Hughes C.. 1999; Swarming motility. Curr Opin Microbiol2:630–635
    [Google Scholar]
  14. González-Flecha B., Demple B.. 1995; Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem270:13681–13687
    [Google Scholar]
  15. Harshey R. M.. 2003; Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol57:249–273
    [Google Scholar]
  16. Harshey R. M., Matsuyama T.. 1994; Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A91:8631–8635
    [Google Scholar]
  17. Henrichsen J.. 1972; Bacterial surface translocation: a survey and a classification. Bacteriol Rev36:478–503
    [Google Scholar]
  18. Hryniewicz M. M., Kredich N. M.. 1991; The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. J Bacteriol173:5876–5886
    [Google Scholar]
  19. Hulanicka D., Klopotowski T., Smith D. A.. 1972; The effect of triazole on cysteine biosynthesis in Salmonella typhimurium. J Gen Microbiol72:291–301
    [Google Scholar]
  20. Kim W., Surette M. G.. 2003; Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance. Biol Proced Online5:189–196
    [Google Scholar]
  21. Kim W., Surette M. G.. 2004; Metabolic differentiation in actively migrating swarming Salmonella. Mol Microbiol54:702–714
    [Google Scholar]
  22. Kim W., Surette M. G.. 2006; Coordinated regulation of two independent cell-cell signalling systems and swarmer differentiation in Salmonella enterica serovar Typhimurium. J Bacteriol188:431–440
    [Google Scholar]
  23. Kim W., Killam T., Sood V., Surette M. G.. 2003; Swarm-cell differentiation in Salmonella enterica serovar Typhimurium results in elevated resistance to multiple antibiotics. J Bacteriol185:3111–3117
    [Google Scholar]
  24. Kredich N. M.. 1971; Regulation of l-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth on varying sulfur sources and O-acetyl-l-serine on gene expression. J Biol Chem246:3474–3484
    [Google Scholar]
  25. Kredich N. M.. 1996; Biosynthesis of cysteine. In Escherichia coli and Salmonella pp514–527 Edited by Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E. Washington: ASM Press;
    [Google Scholar]
  26. Levin B. R., Rozen D. E.. 2006; Non-inherited antibiotic resistance. Nat Rev Microbiol4:556–562
    [Google Scholar]
  27. Liaw S.-J., Lai H.-C., Ho S.-W., Luh K.-T., Wang W.-B.. 2003; Role of RsmA in the regulation of swarming motility and virulence factor expression in Proteus mirabilis. J Med Microbiol52:19–28
    [Google Scholar]
  28. Lilic M., Jovanovic M., Jovanovic G., Savic D. J.. 2003; Identification of the CysB-regulated gene, hslJ, related to the Escherichia coli novobiocin resistance phenotype. FEMS Microbiol Lett224:239–246
    [Google Scholar]
  29. Maloy S. R.. 1990; Phage P22. In Experimental Techniques in Bacterial Genetics pp11–16 Boston, MA: Jones & Bartlett Publishers;
    [Google Scholar]
  30. Neuwald A. F., Krishnan B. R., Brikun I., Kulakauskas S., Suziedelis K., Tomcsanyi T., Leyh T. S., Berg D. E.. 1992; cysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth. J Bacteriol174:415–425
    [Google Scholar]
  31. Oppezzo O. J., Anton D. N.. 1995; Involvement of cysB and cysE genes in the sensitivity of Salmonella typhimurium to mecillinam. J Bacteriol177:4524–4527
    [Google Scholar]
  32. Ostrowski J., Kredich N. M.. 1990; In vitro interactions of CysB protein with the cysJIH promoter of Salmonella typhimurium: inhibitory effects of sulfide. J Bacteriol172:779–785
    [Google Scholar]
  33. Peck H. D.. 1961; Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J Bacteriol82:933–939
    [Google Scholar]
  34. Quan J. A., Schneider B. L., Paulsen I. T., Yamada M., Kredich N. M., Saier M. H. Jr. 2002; Regulation of carbon utilization by sulfur availability in Escherichia coli and Salmonella typhimurium. Microbiology148:123–131
    [Google Scholar]
  35. Rakonjac J., Milic M., Savic D. J.. 1991; cysB and cysE mutants of Escherichia coli K12 show increased resistance to novobiocin. Mol Gen Genet228:307–311
    [Google Scholar]
  36. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. New York, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  37. Shi X., Bennett G. N.. 1994; Effects of rpoA and cysB mutations on acid induction of biodegradative arginine decarboxylase in Escherichia coli. J Bacteriol176:7017–7023
    [Google Scholar]
  38. Sirko A., Zatyka M., Sadowy E., Hulanicka D.. 1995; Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins. J Bacteriol177:4134–4136
    [Google Scholar]
  39. Stec E., Witkowska-Zimny M., Hryniewicz M. M., Neumann P., Wilkinson A. J., Brzozowski A. M., Verma C. S., Zaim J., Wysocki S., Bujacz G. D.. 2006; Structural basis of the sulphate starvation response in Escherichia coli: crystal structure and mutational analysis of the cofactor-binding domain of the Cbl transcriptional regulator. J Mol Biol364:309–322
    [Google Scholar]
  40. Sturgill G., Toutain C. M., Komperda J., O'Toole G. A., Rather P. N.. 2004; Role of CysE in production of an extracellular signaling molecule in Providencia stuartii and Escherichia coli: loss of cysE enhances biofilm formation in Escherichia coli. J Bacteriol186:7610–7617
    [Google Scholar]
  41. Toguchi A., Siano M., Burkart M., Harshey R. M.. 2000; Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J Bacteriol182:6308–6321
    [Google Scholar]
  42. Van Der Ploeg J. R., Iwanicka-Nowicka R., Kertesz M. A., Leisinger T., Hryniewicz M. M.. 1997; Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. J Bacteriol179:7671–7678
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/020347-0
Loading
/content/journal/micro/10.1099/mic.0.2008/020347-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error