1887

Abstract

In , fermentable carbon sources such as glucose and fructose are preferred and elicit glucose repression of genes needed to metabolize non-fermentable carbon sources such as glycerol, ethanol and acetate. Different sets of transcription factors are needed to adjust to specific carbon conditions. For example, Mig1 and Mig2 repress the transcription of gluconeogenic and respiratory genes in the presence of abundant glucose, while the transcriptional activation of these genes depends on transcription factors such as Adr1 and Cat8. Here we show that Ypl230w, which we renamed to Nsf1 (nutrient and stress factor 1), is expressed and localizes to the nucleus under non-fermentable carbon conditions to activate gene transcription. Specifically, the transcriptional activation of , and is shown to be partially dependent on intact . Similarly, the transcriptional activation of is impaired in the Δ mutant in response to high concentrations of NaCl, implying that is also needed for the yeast response to sodium stress. The carbon- and NaCl-mediated transcriptional activation of is dependent on Nsf1. This finding implies that the yeast response to non-fermentable carbon and salt stress is at least partially dependent on .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019976-0
2008-08-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/8/2482.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019976-0&mimeType=html&fmt=ahah

References

  1. Alepuz, P. M., Cunningham, K. W. & Estruch, F. ( 1997; ). Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol Microbiol 26, 91–98.[CrossRef]
    [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 2002; ). Short Protocols in Molecular Biology, 5th edn. New York: Wiley.
  3. Berkey, C. D., Vyas, V. K. & Carlson, M. ( 2004; ). Nrg1 and Nrg2 transcriptional repressors are differently regulated in response to carbon source. Eukaryot Cell 3, 311–317.[CrossRef]
    [Google Scholar]
  4. Bohm, S., Frishman, D. & Mewes, H. W. ( 1997; ). Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res 25, 2464–2469.[CrossRef]
    [Google Scholar]
  5. Boulton, R. B., Singleton, V. L., Bisson, L. F. & Kunkee, R. E. ( 1998; ). Principles and Practices of Winemaking. New York: Springer.
  6. Carlson, M. ( 1999; ). Glucose repression in yeast. Curr Opin Microbiol 2, 202–207.[CrossRef]
    [Google Scholar]
  7. Cheng, C., Kacherovsky, N., Dombek, K. M., Camier, S., Thukral, S. K., Rhim, E. & Young, E. T. ( 1994; ). Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1. Mol Cell Biol 14, 3842–3852.
    [Google Scholar]
  8. Crespo, J. L., Daicho, K., Ushimaru, T. & Hall, M. N. ( 2001; ). The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem 276, 34441–34444.[CrossRef]
    [Google Scholar]
  9. Cunningham, K. W. & Fink, G. R. ( 1996; ). Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol Cell Biol 16, 2226–2237.
    [Google Scholar]
  10. Cyert, M. S. ( 2003; ). Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem Biophys Res Commun 311, 1143–1150.[CrossRef]
    [Google Scholar]
  11. De Vit, M. J., Waddle, J. A. & Johnston, M. ( 1997; ). Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8, 1603–1618.[CrossRef]
    [Google Scholar]
  12. DeVit, M. J. & Johnston, M. ( 1999; ). The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol 9, 1231–1241.[CrossRef]
    [Google Scholar]
  13. Gancedo, J. M. ( 1998; ). Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62, 334–361.
    [Google Scholar]
  14. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D. & Brown, P. O. ( 2000; ). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11, 4241–4257.[CrossRef]
    [Google Scholar]
  15. Haro, R., Garciadeblas, B. & Rodriguez-Navarro, A. ( 1991; ). A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291, 189–191.[CrossRef]
    [Google Scholar]
  16. Haurie, V., Perrot, M., Mini, T., Jeno, P., Sagliocco, F. & Boucherie, H. ( 2001; ). The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 276, 76–85.[CrossRef]
    [Google Scholar]
  17. Hedges, D., Proft, M. & Entian, K. D. ( 1995; ). CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol Cell Biol 15, 1915–1922.
    [Google Scholar]
  18. Jiang, R. & Carlson, M. ( 1996; ). Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev 10, 3105–3115.[CrossRef]
    [Google Scholar]
  19. Klein, C. J., Olsson, L. & Nielsen, J. ( 1998; ). Glucose control in Saccharomyces cerevisiae: the role of Mig1 in metabolic functions. Microbiology 144, 13–24.[CrossRef]
    [Google Scholar]
  20. Kuchin, S., Vyas, V. K. & Carlson, M. ( 2002; ). Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22, 3994–4000.[CrossRef]
    [Google Scholar]
  21. Lamb, T. M. & Mitchell, A. P. ( 2003; ). The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23, 677–686.[CrossRef]
    [Google Scholar]
  22. Lamb, T. M., Xu, W., Diamond, A. & Mitchell, A. P. ( 2001; ). Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276, 1850–1856.[CrossRef]
    [Google Scholar]
  23. Longtine, M. S., McKenzie, A., III, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P. & Pringle, J. R. ( 1998; ). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961.[CrossRef]
    [Google Scholar]
  24. Lutfiyya, L. L., Iyer, V. R., DeRisi, J., DeVit, M. J., Brown, P. O. & Johnston, M. ( 1998; ). Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 150, 1377–1391.
    [Google Scholar]
  25. Marks, V. D., Ho Sui, S. J., Erasmus, D., van der Merwe, G. K., Brumm, J., Wasserman, W. W., Bryan, J. & van Vuuren, H. J. J. ( 2008; ). Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 8, 35–52.[CrossRef]
    [Google Scholar]
  26. McCartney, R. R. & Schmidt, M. C. ( 2001; ). Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem 276, 36460–36466.[CrossRef]
    [Google Scholar]
  27. Mercado, J. J., Vincent, O. & Gancedo, J. M. ( 1991; ). Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1. FEBS Lett 291, 97–100.[CrossRef]
    [Google Scholar]
  28. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  29. Paiva, S., Devaux, F., Barbosa, S., Jacq, C. & Casal, M. ( 2004; ). Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21, 201–210.[CrossRef]
    [Google Scholar]
  30. Park, S. H., Koh, S. S., Chun, J. H., Hwang, H. J. & Kang, H. S. ( 1999; ). Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19, 2044–2050.
    [Google Scholar]
  31. Platara, M., Ruiz, A., Serrano, R., Palomino, A., Moreno, F. & Arino, J. ( 2006; ). The transcriptional response of the yeast Na+-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J Biol Chem 281, 36632–36642.[CrossRef]
    [Google Scholar]
  32. Rossignol, T., Dulau, L., Julien, A. & Blondin, B. ( 2003; ). Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20, 1369–1385.[CrossRef]
    [Google Scholar]
  33. Ruiz, A. & Arino, J. ( 2007; ). Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system. Eukaryot Cell 6, 2175–2183.[CrossRef]
    [Google Scholar]
  34. Sanz, P., Alms, G. R., Haystead, T. A. & Carlson, M. ( 2000a; ). Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol 20, 1321–1328.[CrossRef]
    [Google Scholar]
  35. Sanz, P., Ludin, K. & Carlson, M. ( 2000b; ). Sip5 interacts with both the Reg1/Glc7 protein phosphatase and the Snf1 protein kinase of Saccharomyces cerevisiae. Genetics 154, 99–107.
    [Google Scholar]
  36. Scholer, A. & Schuller, H. J. ( 1993; ). Structure and regulation of the isocitrate lyase gene ICL1 from the yeast Saccharomyces cerevisiae. Curr Genet 23, 375–381.[CrossRef]
    [Google Scholar]
  37. Schuller, H. J. ( 2003; ). Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43, 139–160.
    [Google Scholar]
  38. Stathopoulos, A. M. & Cyert, M. S. ( 1997; ). Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev 11, 3432–3444.[CrossRef]
    [Google Scholar]
  39. Strub, B. R., Eswara, M. B., Pierce, J. B. & Mangroo, D. ( 2007; ). Utp8p is a nucleolar tRNA-binding protein that forms a complex with components of the nuclear tRNA export machinery in Saccharomyces cerevisiae. Mol Biol Cell 18, 3845–3859.[CrossRef]
    [Google Scholar]
  40. Tachibana, C., Yoo, J. Y., Tagne, J. B., Kacherovsky, N., Lee, T. I. & Young, E. T. ( 2005; ). Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Mol Cell Biol 25, 2138–2146.[CrossRef]
    [Google Scholar]
  41. Titz, B., Thomas, S., Rajagopala, S. V., Chiba, T., Ito, T. & Uetz, P. ( 2006; ). Transcriptional activators in yeast. Nucleic Acids Res 34, 955–967.[CrossRef]
    [Google Scholar]
  42. Treitel, M. A., Kuchin, S. & Carlson, M. ( 1998; ). Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol 18, 6273–6280.
    [Google Scholar]
  43. van der Merwe, G. K., Cooper, T. G. & van Vuuren, H. J. ( 2001a; ). Ammonia regulates VID30 expression and Vid30p function shifts nitrogen metabolism toward glutamate formation especially when Saccharomyces cerevisiae is grown in low concentrations of ammonia. J Biol Chem 276, 28659–28666.[CrossRef]
    [Google Scholar]
  44. van der Merwe, G. K., van Vuuren, H. J. & Cooper, T. G. ( 2001b; ). Cis-acting sites contributing to expression of divergently transcribed DAL1 and DAL4 genes in S. cerevisiae: a word of caution when correlating cis-acting sequences with genome-wide expression analyses. Curr Genet 39, 156–165.[CrossRef]
    [Google Scholar]
  45. Vyas, V. K., Kuchin, S. & Carlson, M. ( 2001; ). Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae. Genetics 158, 563–572.
    [Google Scholar]
  46. Vyas, V. K., Berkey, C. D., Miyao, T. & Carlson, M. ( 2005; ). Repressors Nrg1 and Nrg2 regulate a set of stress-responsive genes in Saccharomyces cerevisiae. Eukaryot Cell 4, 1882–1891.[CrossRef]
    [Google Scholar]
  47. Yoshimoto, H., Saltsman, K., Gasch, A. P., Li, H. X., Ogawa, N., Botstein, D., Brown, P. O. & Cyert, M. S. ( 2002; ). Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. J Biol Chem 277, 31079–31088.[CrossRef]
    [Google Scholar]
  48. Young, E. T., Kacherovsky, N. & Van Riper, K. ( 2002; ). Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation. J Biol Chem 277, 38095–38103.[CrossRef]
    [Google Scholar]
  49. Young, E. T., Dombek, K. M., Tachibana, C. & Ideker, T. ( 2003; ). Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J Biol Chem 278, 26146–26158.[CrossRef]
    [Google Scholar]
  50. Zhou, H. & Winston, F. ( 2001; ). NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. BMC Genet 2, 5
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019976-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019976-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error