1887

Abstract

Certain amino acids, and cysteine in particular, promptly blocked toxin expression in strain VPI 10463 when added to late-exponential-phase peptone-yeast cultures, i.e. prior to normal induction of toxins A and B. Glucose reduced toxin yields by 80-fold, but only when supplemented at inoculation. Forty upregulated proteins were identified during maximum toxin expression, and most of these were enzymes involved in energy exchange, e.g. succinate, CO/folate and butyrate metabolism. Transcription of (toxin operon) and (CO/folate operon) was induced by 20- and 10-fold, respectively, and with strikingly similar kinetics between OD 0.8 and 1.2. The sigma factors and were upregulated simultaneously with and (3.5-fold increase of mRNA level), whereas transcription of , , and showed little or no correlation with that of and . The results suggest a connection between toxin expression, alternative energy metabolism and initial sporulation events in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019778-0
2008-11-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3430.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019778-0&mimeType=html&fmt=ahah

References

  1. Buck M., Gallegos M. T., Studholme D. J., Guo Y., Gralla J. D.. 2000; The bacterial enhancer-dependent σ 54 ( σ N) transcription factor. J Bacteriol182:4129–4136
    [Google Scholar]
  2. Choi S. K., Saier M. H. Jr. 2005; Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism. J Bacteriol187:6856–6861
    [Google Scholar]
  3. Debarbouille M., Gardan R., Arnaud M., Rapoport G.. 1999; Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J Bacteriol181:2059–2066
    [Google Scholar]
  4. Dineen S. S., Villapakkam A. C., Nordman J. T., Sonenshein A. L.. 2007; Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol66:206–219
    [Google Scholar]
  5. Dupuy B., Sonenshein A. L.. 1998; Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol27:107–120
    [Google Scholar]
  6. Fisher S. H.. 1999; Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence!. Mol Microbiol32:223–232
    [Google Scholar]
  7. Gottschalk G.. 1986; Bacterial Metabolism , 2nd edn. New York: Springer Verlag;
    [Google Scholar]
  8. Guedon E., Serror P., Ehrlich S. D., Renault P., Delorme C.. 2001; Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis. Mol Microbiol40:1227–1239
    [Google Scholar]
  9. Hadjifrangiskou M., Chen Y., Koehler T. M.. 2007; The alternative sigma factor σ H is required for toxin gene expression by Bacillus anthracis. J Bacteriol189:1874–1883
    [Google Scholar]
  10. Hundsberger T., Braun V., Weidmann M., Leukel P., Sauerborn M., von Eichel-Streiber C.. 1997; Transcription analysis of the genes tcdAE of the pathogenicity locus of Clostridium difficile. Eur J Biochem244:735–742
    [Google Scholar]
  11. Ikeda D., Karasawa T., Yamakawa K., Tanaka R., Namiki M., Nakamura S.. 1998; Effect of isoleucine on toxin production by Clostridium difficile in a defined medium. Zentralbl Bakteriol287:375–386
    [Google Scholar]
  12. Jackson S., Calos M., Myers A., Self W. T.. 2006; Analysis of proline reduction in the nosocomial pathogen Clostridium difficile. J Bacteriol188:8487–8495
    [Google Scholar]
  13. Karasawa T., Maegawa T., Nojiri T., Yamakawa K., Nakamura S.. 1997; Effect of arginine on toxin production by Clostridium difficile in defined medium. Microbiol Immunol41:581–585
    [Google Scholar]
  14. Karlsson S., Burman L. G., Åkerlund T.. 1999; Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology145:1683–1693
    [Google Scholar]
  15. Karlsson S., Lindberg A., Norin E., Burman L. G., Åkerlund T.. 2000; Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile. Infect Immun68:5881–5888
    [Google Scholar]
  16. Karlsson S., Dupuy B., Mukherjee K., Norin E., Burman L. G., Åkerlund T.. 2003; Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. Infect Immun71:1784–1793
    [Google Scholar]
  17. Kim J., Darley D., Buckel W.. 2005; 2-Hydroxyisocaproyl-CoA dehydratase and its activator from Clostridium difficile. FEBS J272:550–561
    [Google Scholar]
  18. Ljungdahl L. G.. 1986; The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol40:415–450
    [Google Scholar]
  19. Maegawa T., Karasawa T., Otha T., Wang X., Kato H., Hayashi H., Nakamura S.. 2002; Linkage between toxin production and purine biosynthesis in Clostridium difficile. J Med Microbiol51:34–41
    [Google Scholar]
  20. Mani N., Dupuy B.. 2001; Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci U S A98:5844–5849
    [Google Scholar]
  21. Mani N., Lyras D., Barroso L., Howarth P., Wilkins T., Rood J. I., Sonenshein A. L., Dupuy B.. 2002; Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J Bacteriol184:5971–5978
    [Google Scholar]
  22. Matamouros S., England P., Dupuy B.. 2007; Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol64:1274–1288
    [Google Scholar]
  23. Merrick M. J.. 1993; In a class of its own – the RNA polymerase sigma factor sigma 54 (sigma N. Mol Microbiol10:903–909
    [Google Scholar]
  24. Molle V., Nakaura Y., Shivers R. P., Yamaguchi H., Losick R., Fujita Y., Sonenshein A. L.. 2003; Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol185:1911–1922
    [Google Scholar]
  25. Mukherjee K., Karlsson S., Burman L. G., Åkerlund T.. 2002; Proteins released during high toxin production in Clostridium difficile. Microbiology148:2245–2253
    [Google Scholar]
  26. O'Connor J. R., Lyras D., Farrow K. A., Adams V., Powell D. R., Hinds J., Cheung J. K., Rood J. I.. 2006; Construction and analysis of chromosomal Clostridium difficile mutants. Mol Microbiol61:1335–1351
    [Google Scholar]
  27. Petranovic D., Guedon E., Sperandio B., Delorme C., Ehrlich D., Renault P.. 2004; Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator. Mol Microbiol53:613–621
    [Google Scholar]
  28. Poxton I. R., McCoubrey J., Blair G.. 2001; The pathogenicity of Clostridium difficile. Clin Microbiol Infect7:421–427
    [Google Scholar]
  29. Ratnayake-Lecamwasam M., Serror P., Wong K. W., Sonenshein A. L.. 2001; Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev15:1093–1103
    [Google Scholar]
  30. Serror P., Sonenshein A. L.. 1996a; Interaction of CodY, a novel Bacillus subtilis DNA-binding protein, with the dpp promoter region. Mol Microbiol20:843–852
    [Google Scholar]
  31. Serror P., Sonenshein A. L.. 1996b; CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol178:5910–5915
    [Google Scholar]
  32. Shivers R. P., Sonenshein A. L.. 2004; Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol Microbiol53:599–611
    [Google Scholar]
  33. Sonenshein A. L.. 2007; Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol5:917–927
    [Google Scholar]
  34. Stadtman T. C., Elliot P.. 1957; Purification and properties of d-proline reductase and a proline racemase from Clostridium sticklandii. J Biol Chem228:983–997
    [Google Scholar]
  35. Weir J., Predich M., Dubnau E., Nair G., Smith I.. 1991; Regulation of spo0H, a gene coding for the Bacillus subtilis σ H factor. J Bacteriol173:521–529
    [Google Scholar]
  36. Wood H. G., Ragsdale S. W., Pezacka E.. 1986; A new pathway of autotrophic growth utilizing carbon monoxide or carbon dioxide and hydrogen. Biochem Int12:421–440
    [Google Scholar]
  37. Yamakawa K., Karasawa T., Ikoma S., Nakamura S.. 1996; Enhancement of Clostridium difficile toxin production in biotin-limited conditions. J Med Microbiol44:111–114
    [Google Scholar]
  38. Yamakawa K., Karasawa T., Ohta T., Hayashi H., Nakamura S.. 1998; Inhibition of enhanced toxin production by Clostridium difficile in biotin-limited conditions. J Med Microbiol47:767–771
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019778-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019778-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error