1887

Abstract

Certain amino acids, and cysteine in particular, promptly blocked toxin expression in strain VPI 10463 when added to late-exponential-phase peptone-yeast cultures, i.e. prior to normal induction of toxins A and B. Glucose reduced toxin yields by 80-fold, but only when supplemented at inoculation. Forty upregulated proteins were identified during maximum toxin expression, and most of these were enzymes involved in energy exchange, e.g. succinate, CO/folate and butyrate metabolism. Transcription of (toxin operon) and (CO/folate operon) was induced by 20- and 10-fold, respectively, and with strikingly similar kinetics between OD 0.8 and 1.2. The sigma factors and were upregulated simultaneously with and (3.5-fold increase of mRNA level), whereas transcription of , , and showed little or no correlation with that of and . The results suggest a connection between toxin expression, alternative energy metabolism and initial sporulation events in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019778-0
2008-11-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3430.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019778-0&mimeType=html&fmt=ahah

References

  1. Buck, M., Gallegos, M. T., Studholme, D. J., Guo, Y. & Gralla, J. D. ( 2000; ). The bacterial enhancer-dependent σ 54 (σ N) transcription factor. J Bacteriol 182, 4129–4136.[CrossRef]
    [Google Scholar]
  2. Choi, S. K. & Saier, M. H., Jr ( 2005; ). Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism. J Bacteriol 187, 6856–6861.[CrossRef]
    [Google Scholar]
  3. Debarbouille, M., Gardan, R., Arnaud, M. & Rapoport, G. ( 1999; ). Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J Bacteriol 181, 2059–2066.
    [Google Scholar]
  4. Dineen, S. S., Villapakkam, A. C., Nordman, J. T. & Sonenshein, A. L. ( 2007; ). Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 66, 206–219.[CrossRef]
    [Google Scholar]
  5. Dupuy, B. & Sonenshein, A. L. ( 1998; ). Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 27, 107–120.[CrossRef]
    [Google Scholar]
  6. Fisher, S. H. ( 1999; ). Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence!. Mol Microbiol 32, 223–232.[CrossRef]
    [Google Scholar]
  7. Gottschalk, G. ( 1986; ). Bacterial Metabolism, 2nd edn. New York: Springer Verlag.
  8. Guedon, E., Serror, P., Ehrlich, S. D., Renault, P. & Delorme, C. ( 2001; ). Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis. Mol Microbiol 40, 1227–1239.[CrossRef]
    [Google Scholar]
  9. Hadjifrangiskou, M., Chen, Y. & Koehler, T. M. ( 2007; ). The alternative sigma factor σ H is required for toxin gene expression by Bacillus anthracis. J Bacteriol 189, 1874–1883.[CrossRef]
    [Google Scholar]
  10. Hundsberger, T., Braun, V., Weidmann, M., Leukel, P., Sauerborn, M. & von Eichel-Streiber, C. ( 1997; ). Transcription analysis of the genes tcdAE of the pathogenicity locus of Clostridium difficile. Eur J Biochem 244, 735–742.[CrossRef]
    [Google Scholar]
  11. Ikeda, D., Karasawa, T., Yamakawa, K., Tanaka, R., Namiki, M. & Nakamura, S. ( 1998; ). Effect of isoleucine on toxin production by Clostridium difficile in a defined medium. Zentralbl Bakteriol 287, 375–386.[CrossRef]
    [Google Scholar]
  12. Jackson, S., Calos, M., Myers, A. & Self, W. T. ( 2006; ). Analysis of proline reduction in the nosocomial pathogen Clostridium difficile. J Bacteriol 188, 8487–8495.[CrossRef]
    [Google Scholar]
  13. Karasawa, T., Maegawa, T., Nojiri, T., Yamakawa, K. & Nakamura, S. ( 1997; ). Effect of arginine on toxin production by Clostridium difficile in defined medium. Microbiol Immunol 41, 581–585.[CrossRef]
    [Google Scholar]
  14. Karlsson, S., Burman, L. G. & Åkerlund, T. ( 1999; ). Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology 145, 1683–1693.[CrossRef]
    [Google Scholar]
  15. Karlsson, S., Lindberg, A., Norin, E., Burman, L. G. & Åkerlund, T. ( 2000; ). Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile. Infect Immun 68, 5881–5888.[CrossRef]
    [Google Scholar]
  16. Karlsson, S., Dupuy, B., Mukherjee, K., Norin, E., Burman, L. G. & Åkerlund, T. ( 2003; ). Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. Infect Immun 71, 1784–1793.[CrossRef]
    [Google Scholar]
  17. Kim, J., Darley, D. & Buckel, W. ( 2005; ). 2-Hydroxyisocaproyl-CoA dehydratase and its activator from Clostridium difficile. FEBS J 272, 550–561.[CrossRef]
    [Google Scholar]
  18. Ljungdahl, L. G. ( 1986; ). The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40, 415–450.[CrossRef]
    [Google Scholar]
  19. Maegawa, T., Karasawa, T., Otha, T., Wang, X., Kato, H., Hayashi, H. & Nakamura, S. ( 2002; ). Linkage between toxin production and purine biosynthesis in Clostridium difficile. J Med Microbiol 51, 34–41.
    [Google Scholar]
  20. Mani, N. & Dupuy, B. ( 2001; ). Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci U S A 98, 5844–5849.[CrossRef]
    [Google Scholar]
  21. Mani, N., Lyras, D., Barroso, L., Howarth, P., Wilkins, T., Rood, J. I., Sonenshein, A. L. & Dupuy, B. ( 2002; ). Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J Bacteriol 184, 5971–5978.[CrossRef]
    [Google Scholar]
  22. Matamouros, S., England, P. & Dupuy, B. ( 2007; ). Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 64, 1274–1288.[CrossRef]
    [Google Scholar]
  23. Merrick, M. J. ( 1993; ). In a class of its own – the RNA polymerase sigma factor sigma 54 (sigma N). Mol Microbiol 10, 903–909.[CrossRef]
    [Google Scholar]
  24. Molle, V., Nakaura, Y., Shivers, R. P., Yamaguchi, H., Losick, R., Fujita, Y. & Sonenshein, A. L. ( 2003; ). Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol 185, 1911–1922.[CrossRef]
    [Google Scholar]
  25. Mukherjee, K., Karlsson, S., Burman, L. G. & Åkerlund, T. ( 2002; ). Proteins released during high toxin production in Clostridium difficile. Microbiology 148, 2245–2253.
    [Google Scholar]
  26. O'Connor, J. R., Lyras, D., Farrow, K. A., Adams, V., Powell, D. R., Hinds, J., Cheung, J. K. & Rood, J. I. ( 2006; ). Construction and analysis of chromosomal Clostridium difficile mutants. Mol Microbiol 61, 1335–1351.[CrossRef]
    [Google Scholar]
  27. Petranovic, D., Guedon, E., Sperandio, B., Delorme, C., Ehrlich, D. & Renault, P. ( 2004; ). Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator. Mol Microbiol 53, 613–621.[CrossRef]
    [Google Scholar]
  28. Poxton, I. R., McCoubrey, J. & Blair, G. ( 2001; ). The pathogenicity of Clostridium difficile. Clin Microbiol Infect 7, 421–427.[CrossRef]
    [Google Scholar]
  29. Ratnayake-Lecamwasam, M., Serror, P., Wong, K. W. & Sonenshein, A. L. ( 2001; ). Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev 15, 1093–1103.[CrossRef]
    [Google Scholar]
  30. Serror, P. & Sonenshein, A. L. ( 1996a; ). Interaction of CodY, a novel Bacillus subtilis DNA-binding protein, with the dpp promoter region. Mol Microbiol 20, 843–852.[CrossRef]
    [Google Scholar]
  31. Serror, P. & Sonenshein, A. L. ( 1996b; ). CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol 178, 5910–5915.
    [Google Scholar]
  32. Shivers, R. P. & Sonenshein, A. L. ( 2004; ). Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol Microbiol 53, 599–611.[CrossRef]
    [Google Scholar]
  33. Sonenshein, A. L. ( 2007; ). Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol 5, 917–927.[CrossRef]
    [Google Scholar]
  34. Stadtman, T. C. & Elliot, P. ( 1957; ). Purification and properties of d-proline reductase and a proline racemase from Clostridium sticklandii. J Biol Chem 228, 983–997.
    [Google Scholar]
  35. Weir, J., Predich, M., Dubnau, E., Nair, G. & Smith, I. ( 1991; ). Regulation of spo0H, a gene coding for the Bacillus subtilis σ H factor. J Bacteriol 173, 521–529.
    [Google Scholar]
  36. Wood, H. G., Ragsdale, S. W. & Pezacka, E. ( 1986; ). A new pathway of autotrophic growth utilizing carbon monoxide or carbon dioxide and hydrogen. Biochem Int 12, 421–440.
    [Google Scholar]
  37. Yamakawa, K., Karasawa, T., Ikoma, S. & Nakamura, S. ( 1996; ). Enhancement of Clostridium difficile toxin production in biotin-limited conditions. J Med Microbiol 44, 111–114.[CrossRef]
    [Google Scholar]
  38. Yamakawa, K., Karasawa, T., Ohta, T., Hayashi, H. & Nakamura, S. ( 1998; ). Inhibition of enhanced toxin production by Clostridium difficile in biotin-limited conditions. J Med Microbiol 47, 767–771.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019778-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019778-0
Loading

Data & Media loading...

Supplements

[PDF file](17 KB)

PDF

[PDF file](411 KB)

PDF

[PDF file](539 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error