1887

Abstract

The microaerophilic food-borne pathogen is exposed to highly variable oxygen concentrations during its life cycle and employs a variety of protection mechanisms to resist oxidative stress. However, not all of the enzymes that mediate such protection have yet been identified. Two genes in strain NCTC 11168, and , are predicted to encode unrelated methionine sulphoxide reductases, which may repair oxidized methionine residues in proteins and thus contribute to oxidative stress defence. Cj0637 and Cj1112 were overexpressed, purified and shown by a coupled thioredoxin–thioredoxin reductase–NADPH assay to catalyse the stereospecific reduction of the and diastereoisomers, respectively, of the model compound methyl tolyl sulphoxide. Cj0637 is thus identified as MsrA and Cj1112 as MsrB. The contribution of these enzymes to oxidative and nitrosative stress resistance in was assessed by phenotypic analysis of a set of isogenic and insertion mutants. As RT-PCR data suggested a polar effect on in the mutant, an merodiploid complementation strain was also constructed. The strain was severely growth inhibited under standard microaerobic conditions, whereas the and strains grew normally. Agar plate disc diffusion assays showed that all mutants displayed increased sensitivity to hydrogen peroxide, organic peroxide, superoxide, and nitrosative and disulphide stress, but quantitative cell viability assays showed that the double mutant was markedly more sensitive to both oxidative and nitrosative stress. All of the stress-sensitivity phenotypes observed for the mutant were restored to wild-type in the merodiploid. It is concluded that MsrA and MsrB make a significant contribution to the protection of against oxidative and nitrosative stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019711-0
2008-08-01
2019-09-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/8/2219.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019711-0&mimeType=html&fmt=ahah

References

  1. Alamuri, P. & Maier, R. J. ( 2004; ). Methionine sulphoxide reductase is an important antioxidant enzyme in the gastric pathogen Helicobacter pylori. Mol Microbiol 53, 1397–1406.[CrossRef]
    [Google Scholar]
  2. Alamuri, P. & Maier, R. J. ( 2006; ). Methionine sulfoxide reductase in Helicobacter pylori: interaction with methionine-rich proteins and stress-induced expression. J Bacteriol 188, 5839–5850.[CrossRef]
    [Google Scholar]
  3. Atack, J. M., Harvey, P., Jones, M. A. & Kelly, D. J. ( 2008; ). The Campylobacter jejuni thiol peroxidases Tpx and Bcp both contribute to aerotolerance and peroxide-mediated stress resistance but have distinct substrate specificities. J Bacteriol 190, (in press) http://dx.doi.org/10.1128/JB.00100-08.
    [Google Scholar]
  4. Atack, J. M. & Kelly, D. J. ( 2007; ). Structure, mechanism and physiological roles of bacterial cytochrome c peroxidases. Adv Microb Physiol 52, 73–106.
    [Google Scholar]
  5. Baillon, M.-L. A., van Vliet, A. H. M., Ketley, J. M., Constantinidou, C. & Penn, C. W. ( 1999; ). An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J Bacteriol 181, 4798–4804.
    [Google Scholar]
  6. Brot, N. & Weissbach, H. ( 2000; ). Peptide methionine sulfoxide reductase: biochemistry and physiological role. Biopolymers 55, 288–296.[CrossRef]
    [Google Scholar]
  7. Brot, N., Weissbach, L., Werth, J. & Weissbach, H. ( 1981; ). Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci U S A 78, 2155–2158.[CrossRef]
    [Google Scholar]
  8. Brot, N., Fliss, H., Coleman, T. & Weissbach, H. ( 1984; ). Enzymatic reduction of methionine sulfoxide residues in proteins and peptides. Methods Enzymol 107, 352–360.
    [Google Scholar]
  9. Bryk, R., Griffin, P. & Nathan, C. ( 2000; ). Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407, 211–215.[CrossRef]
    [Google Scholar]
  10. Burney, S., Caulfield, J. L., Niles, J. C., Wishnok, J. S. & Tannenbaum, S. R. ( 1999; ). The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 424, 37–49.[CrossRef]
    [Google Scholar]
  11. Chang, S. Y., McGary, E. C. & Chang, S. ( 1989; ). Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J Bacteriol 171, 4071–4072.
    [Google Scholar]
  12. Chelikani, P., Fita, I. & Loewen, P. C. ( 2004; ). Diversity of structures and properties among catalases. Cell Mol Life Sci 61, 192–208.[CrossRef]
    [Google Scholar]
  13. Douglas, T., Daniel, D. S., Parida, B. K., Jagannath, C. & Dhandayuthapani, S. ( 2004; ). Methionine sulfoxide reductase A (MsrA) deficiency affects the survival of Mycobacterium smegmatis within macrophages. J Bacteriol 186, 3590–3598.[CrossRef]
    [Google Scholar]
  14. Elvers, K. T., Wu, G., Gilberthorpe, N. J., Poole, R. K. & Park, S. F. ( 2004; ). Role of an inducible single-domain hemoglobin in mediating resistance to nitric oxide and nitrosative stress in Campylobacter jejuni and Campylobacter coli. J Bacteriol 186, 5332–5341.[CrossRef]
    [Google Scholar]
  15. Elvers, K. T., Turner, S. M., Wainwright, L. M., Marsden, G., Hinds, J., Cole, J. A., Poole, R. K., Penn, C. W. & Park, S. F. ( 2005; ). NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol Microbiol 57, 735–750.[CrossRef]
    [Google Scholar]
  16. Ezraty, B., Aussel, L. & Barras, F. ( 2005; ). Methionine sulfoxide reductases in prokaryotes. Biochim Biophys Acta 1703, 221–229.[CrossRef]
    [Google Scholar]
  17. Grant, K. A. & Park, S. F. ( 1995; ). Molecular characterization of katA from Campylobacter jejuni and generation of a catalase-deficient mutant of Campylobacter coli by interspecific allelic exchange. Microbiology 141, 1369–1376.[CrossRef]
    [Google Scholar]
  18. Grimaud, R., Ezraty, B., Mitchell, J. K., Lafitte, D., Briand, C., Derrick, P. J. & Barras, F. ( 2001; ). Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J Biol Chem 276, 48915–48920.[CrossRef]
    [Google Scholar]
  19. Hofreuter, D., Tsai, J., Watson, R. O., Novik, V., Altman, B., Benitez, M., Clark, C., Perbost, C., Jarvie, T. & other authors ( 2006; ). Unique features of a highly pathogenic Campylobacter jejuni strain. Infect Immun 74, 4694–4707.[CrossRef]
    [Google Scholar]
  20. Holmes, K., Mulholland, F., Pearson, B. M., Pin, C., McNicholl-Kennedy, J., Ketley, J. M. & Wells, J. M. ( 2005; ). Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151, 243–257.[CrossRef]
    [Google Scholar]
  21. Hughes, M. N. ( 1999; ). Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochim Biophys Acta. 1411, 263–272.[CrossRef]
    [Google Scholar]
  22. Karlyshev, A. V. & Wren, B. W. ( 2005; ). Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni. Appl Environ Microbiol 71, 4004–4013.[CrossRef]
    [Google Scholar]
  23. Kauffmann, B., Favier, F., Olry, A., Boschi-Muller, S., Carpentier, P., Branlant, G. & Aubry, A. ( 2002; ). Crystallization and preliminary X-ray diffraction studies of the peptide methionine sulfoxide reductase B domain of Neisseria meningitidis PILB. Acta Crystallogr D Biol Crystallogr 58, 1467–1469.[CrossRef]
    [Google Scholar]
  24. Ketley, J. M. ( 1997; ). Pathogenesis of enteric infection by Campylobacter. Microbiology 143, 5–21.[CrossRef]
    [Google Scholar]
  25. Lee, B. C., Lee, Y. K., Lee, H.-J., Stadtman, E. R., Lee, K.-H. & Chung, N. ( 2005; ). Cloning and characterization of antioxidant enzyme methionine sulfoxide-S-reductase from Caenorhabditis elegans. Arch Biochem Biophys 434, 275–281.[CrossRef]
    [Google Scholar]
  26. Lin, Z., Johnson, L. C., Weissbach, H., Brot, N., Lively, M. O. & Lowther, W. T. ( 2007; ). Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc Natl Acad Sci U S A 104, 9597–9602.[CrossRef]
    [Google Scholar]
  27. Lowther, W. T., Weissbach, H., Etienne, F., Brot, N. & Matthews, B. W. ( 2002; ). The mirrored methionine sulfoxide reductases of Neisseria gonorrhoeae pilB. Nat Struct Biol 9, 348–352.
    [Google Scholar]
  28. Moskovitz, J., Poston, J. M., Berlett, B. S., Nosworthy, N. J., Szczepanowski, R. & Stadtman, E. R. ( 2000; ). Identification and characterization of a putative active site for peptide methionine sulfoxide reductase (MsrA) and its substrate stereospecificity. J Biol Chem 275, 14167–14172.[CrossRef]
    [Google Scholar]
  29. Moskovitz, J., Singh, V. K., Requena, J., Wilkinson, B. J., Jayaswal, R. K. & Stadtman, E. R. ( 2002; ). Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity. Biochem Biophys Res Commun 290, 62–65.[CrossRef]
    [Google Scholar]
  30. Olry, A., Boschi-Muller, S., Marraud, M., Sanglier-Cianferani, S., Van Dorsselear, A. & Branlant, G. ( 2002; ). Characterization of the methionine sulfoxide reductase activities of PILB, a probable virulence factor from Neisseria meningitidis. J Biol Chem 277, 12016–12022.[CrossRef]
    [Google Scholar]
  31. Park, S. F. ( 2002; ). The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int J Food Microbiol 74, 177–188.[CrossRef]
    [Google Scholar]
  32. Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., Chillingworth, T., Davies, R. M., Feltwell, T. & other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.[CrossRef]
    [Google Scholar]
  33. Pearson, B. M., Gaskin, D. J. H., Segers, R. P. A. M., Wells, J. M., Nuijten, P. J. M. & van Vliet, A. H. M. ( 2007; ). The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). J Bacteriol 189, 8402–8403.[CrossRef]
    [Google Scholar]
  34. Pesci, E. C., Cottle, D. L. & Pickett, C. L. ( 1994; ). Genetic, enzymatic, and pathogenic studies of the iron superoxide dismutase of Campylobacter jejuni. Infect Immun 62, 2687–2694.
    [Google Scholar]
  35. Pittman, M. S., Elvers, K. T., Lee, L., Jones, M. A., Poole, R. K., Park, S. F. & Kelly, D. J. ( 2007; ). Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress. Mol Microbiol 63, 575–590.[CrossRef]
    [Google Scholar]
  36. Poole, L. B. ( 2005; ). Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 433, 240–254.[CrossRef]
    [Google Scholar]
  37. Poole, R. K. & Hughes, M. N. ( 2000; ). New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36, 775–783.[CrossRef]
    [Google Scholar]
  38. Poole, L. B., Reynolds, C. M., Wood, Z. A., Karplus, P. A., Ellis, H. R. & Li Calzi, M. ( 2000; ). AhpF and other NADH : peroxiredoxin oxidoreductases, homologues of low M r thioredoxin reductase. Eur J Biochem 267, 6126–6133.[CrossRef]
    [Google Scholar]
  39. Purdy, D. & Park, S. F. ( 1994; ). Cloning, nucleotide sequence and characterization of a gene encoding superoxide dismutase from Campylobacter jejuni and Campylobacter coli. Microbiology 140, 1203–1208.[CrossRef]
    [Google Scholar]
  40. Purdy, D., Cawthraw, S., Dickinson, J. H., Newell, D. G. & Park, S. F. ( 1999; ). Generation of a superoxide dismutase (SOD)-deficient mutant of Campylobacter coli: evidence for the significance of SOD in Campylobacter survival and colonization. Appl Environ Microbiol 65, 2540–2546.
    [Google Scholar]
  41. Rozen, S. & Skaletsky, H. ( 2000; ). Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132, 365–386.
    [Google Scholar]
  42. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  43. Sharov, V. S., Ferrington, D. A., Squier, T. C. & Schoneich, C. ( 1999; ). Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase. FEBS Lett 455, 247–250.[CrossRef]
    [Google Scholar]
  44. Skaar, E. P., Tobiason, D. M., Quick, J., Judd, R. C., Weissbach, H., Etienne, F., Brot, N. & Seifert, H. S. ( 2002; ). The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc Natl Acad Sci U S A 99, 10108–10113.[CrossRef]
    [Google Scholar]
  45. Solbiati, J., Chapman-Smith, A., Miller, J. L., Miller, C. G., Cronan, J. & John, E. ( 1999; ). Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J Mol Biol 290, 607–614.[CrossRef]
    [Google Scholar]
  46. St. John, G., Brot, N., Ruan, J., Erdjument-Bromage, H., Tempst, P., Weissbach, H. & Nathan, C. ( 2001; ). Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proc Natl Acad Sci U S A 98, 9901–9906.[CrossRef]
    [Google Scholar]
  47. Storz, G. & Imlay, J. A. ( 1999; ). Oxidative stress. Curr Opin Microbiol 2, 188–194.[CrossRef]
    [Google Scholar]
  48. Tauxe, R. V. ( 1992; ). Epidemiology of Campylobacter infections in the United States and other industrialised nations. In Campylobacter jejuni: Current Status and Future Trends, pp. 9–19. Edited by I. Nachamkin, M. J. Blaser & L. S. Tompkins. Washington, DC: American Society for Microbiology.
  49. van Vliet, A. H. M., Wooldridge, K. G. & Ketley, J. M. ( 1998; ). Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180, 5291–5298.
    [Google Scholar]
  50. Vattanaviboon, P., Seeanukun, C., Whangsuk, W., Utamapongchai, S. & Mongkolsuk, S. ( 2005; ). Important role for methionine sulfoxide reductase in the oxidative stress response of Xanthomonas campestris pv. phaseoli. J Bacteriol 187, 5831–5836.[CrossRef]
    [Google Scholar]
  51. Vogt, W. ( 1995; ). Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18, 93–105.[CrossRef]
    [Google Scholar]
  52. Walter, J., Chagnaud, P., Tannock, G. W., Loach, D. M., Dal Bello, F., Jenkinson, H. F., Hammes, W. P. & Hertel, C. ( 2005; ). A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of Lactobacillus reuteri in the murine gut. Appl Environ Microbiol 71, 979–986.[CrossRef]
    [Google Scholar]
  53. Weissbach, H., Etienne, F., Hoshi, T., Heinemann, S. H., Lowther, W. T., Matthews, B., St. John, G., Nathan, C. & Brot, N. ( 2002; ). Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys 397, 172–178.[CrossRef]
    [Google Scholar]
  54. Wizemann, T. M., Moskovitz, J., Pearce, B. J., Cundell, D., Arvidson, C. G., So, M., Weissbach, H., Brot, N. & Masure, H. R. ( 1996; ). Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens. Proc Natl Acad Sci U S A 93, 7985–7990.[CrossRef]
    [Google Scholar]
  55. Wood, Z. A., Schroder, E., Robin Harris, J. & Poole, L. B. ( 2003; ). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28, 32–40.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019711-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019711-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error